拒绝服务攻击下基于自注意力机制的数据恢复
DOI:
CSTR:
作者:
作者单位:

1.广州大学 机械与电气工程学院;2.广州航海学院 低空装备与智能控制学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(62006052);广东省基础与应用基础研究基金(2023A1515012468, 2022A1515110148);广州市教育局高校科研项目(2024311991)


Data Recovery Based on Self Attention Mechanism under Denial of Service Attacks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对信息物理系统(CPSs)在遭受拒绝服务(DoS)攻击后的测量数据缺失,提出了基于数据插补的缺失数据恢复策略。构建了非周期性、资源受限的DoS攻击模型,同时引入随机数据丢包以模拟实际CPSs中网络攻击的复杂性;针对系统测量数据恢复问题,引入了一种基于对角线遮蔽自注意力机制的数据插补算法;为了提升插补的准确性和训练速度,该算法通过对角线遮蔽机制减少模型对自身值的依赖,再对对角线遮蔽自注意力模块进行加权组合。电力CPSs的实验结果表明,与几种深度学习算法相比,该数据恢复方法在复杂通信环境下可提高系统测量数据的恢复精度和效率,增强了系统的抗攻击能力和稳定性。

    Abstract:

    In order to solve the problem of missing measurement data in cyber physical systems (CPSs) after being attacked by denial of service (DoS), a missing data recovery strategy on data imputation is proposed. First, the aperiodic, resource constrained DoS attack model is constructed, and random packet loss is introduced to simulate the complexity of cyber-attacks in actual CPSs. For the problem of system measurement data recovery, a novel data imputation algorithm that leverages a diagonal masking self-attention mechanism is introduced. To enhance the accuracy of data imputation and expedite the training process, a diagonal masking mechanism is employed to mitigate the model's reliance on its own values. Subsequently, a weighted combination of the diagonal masking self-attention modules is utilized to further refine the imputation results. The experimental results of power CPSs show that, compared with several deep learning algorithms, the proposed data recovery method can improve the accuracy and efficiency of the system measurement data recovery in complex communication environment, and enhances the anti-attack ability and stability of the system.

    参考文献
    相似文献
    引证文献
引用本文

杨晓芬,陈晓婷,李沁雪,闫桂林,钟杰宇.拒绝服务攻击下基于自注意力机制的数据恢复计算机测量与控制[J].,2025,33(12):246-253.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-19
  • 最后修改日期:2024-12-31
  • 录用日期:2025-01-02
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码