基于形状感知及语义对齐的双分支分割网络
DOI:
CSTR:
作者:
作者单位:

江南大学 智能制造学院

作者简介:

通讯作者:

中图分类号:

TP 391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Attention-Guided Shape-Aware Double-branch Segmentation Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂工况下缺陷干扰,脏污噪声和镜头模糊导致目标分割精度低的问题,提出了一种基于形状感知语义对齐的双分支分割网络。针对由深层到浅层的语义传播错误导致的低精度问题,设计了语义流对齐模块,学习特征图之间的偏移量辅助信息对齐。引入了注意力引导自选择融合模块,结合深层信息和浅层信息特性来指导更准确的分割。设计了形状感知损失函数,利用形状特征引导网络关注难以分割的边界区域解决噪声与目标粘连的问题,提高了分割性能。在自建芯片数据集上进行的综合实验证实,此方法提高了特征表示和分割性能,相比基线网络,mIoU达到了94.4%(提升了2.1%),速度达到了48.86FPS(提高21%),实现了精度与速度的平衡,可满足实际工业应用。在CamVid数据集上,相比基线网络,mIoU为65.1%(提升了3.0%),同时参数量减少4.6%,证实了所提算法的普适性。

    Abstract:

    To address the problems of low target segmentation accuracy caused by defect interference, dirty noise, and blurred lenses in complex scenarios, a Attention-Guided Shape-Aware Bilateral Segmentation Network was proposed. To solve the problem of low precision caused by semantic propagation errors from deep to shallow layers, a semantic flow alignment module was designed to learn the offset between feature maps and assist information alignment. An attention-guided self-selective fusion module was introduced to guide more accurate segmentation by combining deep and shallow information characteristics. A shape-aware loss function was designed to guide the network to pay more attention to difficult boundary regions to solve the problem of noise and object adhesion, improving segmentation performance. The comprehensive experiments on the self-built chip dataset proved that this method improved feature representation and segmentation performance, with mIoU reaching 94.4% (an improvement of 2.1%), speed reaching 48.86FPS (an improvement of 21%), achieving a balance between accuracy and speed and meeting the needs of actual industrial applications. On the CamVid dataset, compared with the baseline network, mIoU was 65.1% (an improvement of 3.0%), the number of parameters was reduced by 4.6%, proving the universality of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

庄祉珊,吴静静,赵迎龙,魏斌.基于形状感知及语义对齐的双分支分割网络计算机测量与控制[J].,2025,33(12):237-245.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-14
  • 最后修改日期:2024-12-21
  • 录用日期:2025-01-02
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码