基于YOLOv8n的轻量级自适应权重手势识别模型
DOI:
CSTR:
作者:
作者单位:

青岛科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:


A Lightweight Adaptive-weight Gesture Recognition Model Based on YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,针对手势识别模型的轻量化研究层出不穷,但常以牺牲识别精度为代价;为此,提出一种基于YOLOv8模型的轻量级手势识别模型LAW-YOLO;设计轻量级自适应权重卷积LAWC并引入特征提取网络,通过自适应权重机制在复杂背景中精准聚焦手势区域,并有效降低计算成本;采用双向特征金字塔网络BiFPN优化模型特征融合网络并减少冗余通道,在尽可能小的精度损失下大幅减少模型参数量和计算量;使用融入了自校正卷积SC-Conv的自校正模块SC2f替换检测头前的C2f模块,增强模型特征融合网络性能,弥补轻量化带来的精度损失;改进模型在HaGRID手势数据集上验证,改进后模型参数量和模型大小较改进前分别减少41.20%和41.94%,识别精度高达98.63%,显著提升模型计算效率和识别精度。

    Abstract:

    In recent years, there have been numerous studies on lightweight gesture recognition models, but often at the cost of sacrificing recognition accuracy; Therefore, a lightweight gesture recognition model LAW-YOLO based on the YOLOv8 model is proposed;, Firstly, a lightweight adaptive weight convolution(LAWC) is designed and a feature extraction network is introduced to accurately focus gesture regions in complex backgrounds through an adaptive weight mechanism, effectively reducing computational costs; Secondly, the bidirectional feature pyramid network(BiFPN) is used to optimize the model feature fusion network and reduce redundant channels, significantly reducing the number of model parameters and computation with minimal accuracy loss; Finally, the self-calibrated module(SC2f) incorporating self-calibrated convolution(SC-Conv) is used to replace the C2f module in front of the detection head, enhancing the performance of the model feature fusion network and compensating for the accuracy loss caused by lightweight design; The improved model was validated on the HaGRID gesture dataset, and the number of model parameters and model size were reduced by 41.20% and 41.94% respectively compared to before the improvement. The recognition accuracy reached 98.63%, significantly improving the computational efficiency and recognition accuracy of the model.

    参考文献
    相似文献
    引证文献
引用本文

徐慕君,葛艳,时东亮.基于YOLOv8n的轻量级自适应权重手势识别模型计算机测量与控制[J].,2025,33(10):225-234.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-08
  • 最后修改日期:2024-10-21
  • 录用日期:2024-10-23
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码