基于PSO-SA的涡轴发动机气路模型优化
DOI:
CSTR:
作者:
作者单位:

南京航空航天大学 民航学院

作者简介:

通讯作者:

中图分类号:

TP391.92

基金项目:


Optimization of Gas Path Model for Turboshaft Engine Based on PSO-SA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    涡轴发动机故障诊断与寿命预测时,气路模型有着举足轻重的作用,但是通过部件法建立的涡轴发动机气路模型普遍存在着平衡求解收敛慢、收敛异常以及模型误差较大的问题;针对气路模型平衡求解中存在的收敛问题以及模型偏差较大的问题,采用变比热法建立了涡轴发动机气路模型;使用牛顿-拉夫逊法对模型的平衡方程进行求解,分析了干扰模型收敛的若干原因,对求解算法提出了增加可变求解域边界约束等解决措施,并利用两类收敛因子以加速求解收敛,最终使求解成功率达到97%;对于模型误差较大的问题分别使用粒子群算法与模拟退火粒子群对模型进行优化,通过对比粒子群算法与模拟退火算法的结果证明了模拟退火粒子群算法具有较好的收敛性与优化效果;成功将模型绝对误差由最开始的7.27%降至1.59%,局部绝对误差由最高19%降低到4.6%左右。

    Abstract:

    In the diagnosis and life prediction of gas turbine engines, the gas path model plays a crucial role. However, the gas path model of gas turbine engines established by the component method generally has problems such as slow convergence of balance solution, abnormal convergence, and large model error. To address the convergence problem in the balance solution of the gas path model and the large model deviation, the variable specific heat method is first used to establish the gas path model of the gas turbine engine. Then, the Newton-Raphson method is used to solve the balance equation of the model, several reasons for the convergence of the disturbance model are analyzed, and solutions such as adding variable solution domain boundary constraints are proposed for the solution algorithm. Two types of convergence factors are used to accelerate the solution convergence, ultimately achieving a solution success rate of 97%. To address the issue of significant model errors, both the Particle Swarm Optimization (PSO) algorithm and the Simulated Annealing Particle Swarm Optimization (PSO-SA) algorithm were employed for model optimization. A comparative analysis of the results obtained from the PSO and PSO-SA algorithms substantiates that the PSO-SA algorithm exhibits superior convergence properties and enhanced optimization performance. The model’s absolute error was successfully reduced from the initial 7.27% to 1.59%, and the local absolute error was reduced from a maximum of 19% to about 4.6%.

    参考文献
    相似文献
    引证文献
引用本文

史昊天,蔡景,厉明.基于PSO-SA的涡轴发动机气路模型优化计算机测量与控制[J].,2025,33(10):216-224.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-31
  • 最后修改日期:2024-10-15
  • 录用日期:2024-10-16
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码