通过阈值非结构化剪枝对MobileNetV3模型优化研究
DOI:
CSTR:
作者:
作者单位:

延安大学 物理与电子信息学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(52365069)


The Research on Optimization of MobileNetV3 Model Through Threshold-Based Unstructured Pruning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决深度学习模型在移动设备和嵌入式系统中的高效应用问题,对MobileNetV3模型进行了优化研究;分析了如何通过剪枝技术减少模型的计算量和参数量,以提高其在资源受限环境中的应用效率;采用了粗粒度通道剪枝与细粒度非结构化剪枝相结合的策略,显著减少了参数量和计算开销,为应对剪枝引起的精度下降,结合深度增强策略通过增加模型深度弥补性能损失;技术创新体现在结合粗粒度与细粒度剪枝的优化策略,有效平衡了模型精度与计算效率;实验在CIFAR-10和CIFAR-100数据集上验证了该方法,结果显示,优化后的模型显著降低了计算成本并保持了高分类精度,CIFAR-100数据集精度提升8.1%,CIFAR-10数据集精度提升2.08%;该方法适用于资源受限的设备,满足了对低计算开销和高精度的实际应用需求。

    Abstract:

    To address the efficient application of deep learning models on mobile devices and embedded systems, an optimization study on the MobileNetV3 model was conducted; The study analyzed how pruning techniques can reduce model computation and parameter count to enhance its efficiency in resource-constrained environments; A strategy combining coarse-grained channel pruning and fine-grained unstructured pruning was employed, significantly reducing parameters and computational overhead; To compensate for the accuracy degradation caused by pruning, a depth enhancement strategy was incorporated to restore performance by increasing model depth; The technical innovation lies in the combination of coarse-grained and fine-grained pruning, effectively balancing model accuracy and computational efficiency; Experiments conducted on the CIFAR-10 and CIFAR-100 datasets validated the method, with results showing that the optimized model significantly reduced computational costs while maintaining high classification accuracy, with accuracy improvements of 8.1% on CIFAR-100 and 2.08% on CIFAR-10; This method is suitable for resource-constrained devices, meeting the practical requirements for low computational cost and high accuracy.

    参考文献
    相似文献
    引证文献
引用本文

白鸿冰,杨延宁,姚旭.通过阈值非结构化剪枝对MobileNetV3模型优化研究计算机测量与控制[J].,2025,33(10):191-198.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-24
  • 最后修改日期:2024-10-08
  • 录用日期:2024-10-11
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码