基于多目视觉的高集成特种车辆通用自动标定方法研究
DOI:
CSTR:
作者:
作者单位:

上海机电工程研究所

作者简介:

通讯作者:

中图分类号:

TP27

基金项目:


Research on a General Automatic Calibration Method for Highly Integrated Special Vehicles Based on Multi-View Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高集成特种车辆的标定工作直接影响车辆使用性能,是车辆研制过程的重要一环。传统标定方法使用经纬仪、水平仪等仪器对车辆进行测量,操作复杂、自动化水平和工作效率低。针对这一问题,基于多目视觉测量技术,提出了一种高集成特种车辆通用自动标定方法,利用多相机拍摄地面控制场和固定于被测产品表面测量工装,获取编码点信息,利用基于最小二乘法的空间坐标转换原理和公共点转换技术计算各待测对象之间的空间位姿关系,从而得出车辆各项精度指标。验证试验结果表明,相对于传统标定方法,视觉通用自动标定方法可在精度相当的前提下将标定时间减少为原来的25%,大大提高标定效率。

    Abstract:

    The calibration of highly integrated special vehicles directly affects their performance and is a crucial step in vehicle development. Traditional calibration methods use instruments such as theodolites and spirit levels to measure the vehicle, which involve complex operations and have low levels of automation and efficiency. This paper proposes a general automatic calibration method for highly integrated special vehicles based on multi-view vision measurement technology to address this issue. The method employs multiple cameras to capture images of ground control fields and measurement fixtures fixed to the vehicle's surface under test. By acquiring encoded point information and applying the spatial coordinate transformation principle based on the least squares method and common point transformation techniques, the spatial pose relationships between the objects under test are calculated, thereby deriving various accuracy indicators of the vehicle. Validation tests show that, compared to traditional calibration methods, the proposed vision-based automatic calibration method can reduce the calibration time to 25% of the original duration while maintaining comparable accuracy, significantly improving calibration efficiency.

    参考文献
    相似文献
    引证文献
引用本文

蒋圣鹏,刘禹华,曾远帆,王上飞,王艺伟,周迪.基于多目视觉的高集成特种车辆通用自动标定方法研究计算机测量与控制[J].,2025,33(12):174-181.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-19
  • 最后修改日期:2024-12-29
  • 录用日期:2025-01-02
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码