基于粗差剔除算法的遥感影像控制点匹配方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    遥感影像的处理经过预处理、特征提取、匹配等操作后,每个环节会引入一定的误差,这些误差在后续控制点匹配时会导致匹配性能的下降。对此,利用粗差剔除算法,优化设计遥感影像控制点匹配方法。首先,利用传感器生成遥感影像,并通过滤波、去雾、校正等步骤,提升初始遥感影像质量。然后,从纹理特征、轮廓特征、光谱特征等方面提取遥感影像特征。并根据特征提取结果,量化描述遥感影像控制点。最后,通过粗匹配、精匹配两个环节得出匹配结果,通过粗差剔除算法,剔除遥感影像控制点匹配结果中的误匹配点对。实验结果表明:优化设计方法的错误、冗余和缺失匹配系数均得到明显降低,即优化设计方法具有更优的匹配效果。

    Abstract:

    After preprocessing, feature extraction, matching, and other operations, the processing of remote sensing images introduces certain errors in each step, which can lead to a decrease in matching performance during subsequent control point matching. To this end, the coarse error removal algorithm is used to optimize the design of remote sensing image control point matching method. Firstly, remote sensing images are generated using sensors, and the initial remote sensing image quality is improved through steps such as filtering, defogging, and correction. Then, remote sensing image features are extracted from texture features, contour features, spectral features, and other aspects. And based on the feature extraction results, quantitatively describe the control points of remote sensing images. Finally, the matching results are obtained through two steps: coarse matching and fine matching. The coarse error removal algorithm is used to eliminate the erroneous matching point pairs in the remote sensing image control point matching results. The experimental results show that the error, redundancy, and missing matching coefficients of the optimization design method have been significantly reduced, indicating that the optimization design method has a better matching effect.

    参考文献
    相似文献
    引证文献
引用本文

闵小翠.基于粗差剔除算法的遥感影像控制点匹配方法计算机测量与控制[J].,2025,33(10):103-110.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-09
  • 最后修改日期:2024-09-20
  • 录用日期:2024-10-08
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码