基于多智能算法融合的盾构机掘进参数优化控制
DOI:
CSTR:
作者:
作者单位:

山西工程技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Optimized Control of Tunneling for Shield Machine Based on Multi-Intelligent Algorithms Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘 要:为确保盾构机掘进过程中土压力的平衡控制,基于此提出了一种基于盾构掘进参数智能优化控制策略。该策略基于先进的预测模型框架,目标是通过最小化土压力设定值与预测值之间的偏差来构建优化控制模型。优化控制过程分为三个步骤:首先,采用离散小波变换(DWT,wavelet transform discrete)对原始施工数据进行去噪预处理;然后,利用一维卷积神经网络(1DCNN,one dimensional convolutional neural network)和长短时记忆神经网络(LSTM,long short-term memory)对土压力进行特征提取和土压力多步预测;最后,通过改进的粒子群优化(EPSO,evolutionary particle swarm optimization)算法对掘进速度和螺旋机转速等掘进参数进行在线优化求解,进而实现土压力的平衡控制。实验结果表明:该策略能够精确地追踪设定的土压力,实现密封舱内外土压力的控制,从而显著提升盾构掘进作业的安全性和效率。

    Abstract:

    Abstract: To ensure balanced control of earth pressure during the shield machine tunneling process, this study proposes an intelligent optimization control strategy based on shield machine tunneling parameters. The strategy is based on an advanced predictive model framework, aiming to construct an optimized control model by minimizing the deviation between the set earth pressure value and the predicted value. The optimization control process is divided into three steps: first, discrete wavelet transform is used for denoising the raw construction data; then, a one-dimensional convolutional neural network and a long short-term memory neural network are utilized for feature extraction and multi-step prediction of earth pressure; finally, the evolutionary particle swarm optimization algorithm is employed for online optimization of tunneling parameters such as propulsion speed and screw conveyor speed, thereby achieving balanced control of earth pressure throughout the tunneling process. Experimental results show that this strategy can accurately track the set earth pressure and control earth pressure both inside and outside the sealed chamber, and significantly enhance the safety and efficiency of shield machine tunneling operations.

    参考文献
    相似文献
    引证文献
引用本文

王子文.基于多智能算法融合的盾构机掘进参数优化控制计算机测量与控制[J].,2025,33(9):144-151.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-07
  • 最后修改日期:2024-09-18
  • 录用日期:2024-09-19
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码