基于动态扰动衰减神经网络和算法的图像识别
DOI:
CSTR:
作者:
作者单位:

1.中国民航大学 电子信息与自动化学院 2.天津 300300

作者简介:

通讯作者:

中图分类号:

TP183??

基金项目:


Image recognition based on dynamic perturbation attenuation neural network and algorithms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在处理大规模数据集时,梯度下降法作为一种常用的训练方法容易在获得部分数据的最优解后收敛速度变慢,导致无法获得整体数据的最优解。针对梯度下降法所遇到的问题,在现有的网络基础上根据生物神经网络中的大脑皮质-基底神经节回路和E/I扰动现象提出了一种创新的解决方法——动态扰动衰减网络和动态扰动衰减梯度下降算法。此网络在现有网络的输入层上引入一层逐渐减小的扰动层,随着迭代轮数的增加,扰动层对输入层施加的扰动逐渐趋近于零。此方法不仅使得梯度下降法在训练前期加快了收敛速度,在整个梯度下降过程中,还避免了获得局部最优解和过拟合的问题,从而提高了网络的性能。通过在MNIST、CIFAR-10和CIFAR-100数据集上使用不同的网络和算法进行实验,成功验证了所提出的动态扰动衰减网络和算法的有效性。相对于原始网络使用Adam和SGDM算法,动态扰动衰减方法在测试准确度上分别取得了为0.16%至1.4%和0.39%至1.38%的提升,同时具备更快的收敛速度。

    Abstract:

    When dealing with large-scale datasets, gradient descent, as a commonly used training method, tends to slow down the convergence speed after obtaining the optimal solution for some data, resulting in the inability to obtain the optimal solution for the overall data. Aiming at the problems encountered by gradient descent method, an innovative solution based on the cerebral cortex basal ganglia circuit and E/I disturbance phenomenon in biological neural networks is proposed based on existing networks - dynamic disturbance attenuation network and dynamic disturbance attenuation gradient descent method. This network introduces a gradually decreasing disturbance layer on the input layer of the existing network, and as the number of iteration rounds increases, the disturbance layer gradually approaches zero on the input layer. This method not only accelerates the convergence speed of the gradient descent method in the early stage of training, but also avoids the problem of obtaining local optimal solutions and overfitting throughout the entire gradient descent process, thereby improving the performance of the network. The effectiveness of the proposed dynamic disturbance attenuation network and algorithm was successfully validated through experiments using different networks and algorithms on the MNIST, CIFAR-10, and CIFAR-100 datasets. Compared to the original network using Adam and SGDM algorithms, the dynamic disturbance attenuation method achieved improvements in testing accuracy of 0.16% to 1.4% and 0.39% to 1.38%, respectively, while also having faster convergence speed.

    参考文献
    相似文献
    引证文献
引用本文

费春国,赵扬帆.基于动态扰动衰减神经网络和算法的图像识别计算机测量与控制[J].,2025,33(10):174-182.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-26
  • 最后修改日期:2024-10-21
  • 录用日期:2024-10-23
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码