基于组合模态分解与IGWO-BiLSTM的短期风电功率预测
DOI:
CSTR:
作者:
作者单位:

东北石油大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于组合模态分解(ICEEMDAN-VMD)、改进灰狼算法(IGWO)和双向长短期记忆神经网络(BiLSTM)的ICEEMDAN-VMD-IGWO-BiLSTM组合模型;首先,利用组合模态分解后的模态分量个数,有限避免了分解不充分;其次引入透镜成像反向学习、非线性收敛因子以及与柯西变异算法融合来改进灰狼算法,用于优化双向长短期记忆神经网络,然后对分解得到的各个子序列建立IGWO-BiLSTM预测模型,最后叠加每个子序列的预测值得到最终的预测值;将该模型用于实际风电功率预测,实验结果表明:ICEEMDAN-VMD-IGWO-BiLSTM组合模型的MAE、MSE、RMSE分别为4.9189MW、32.3683MW、5.6893MW;相较于CNN-LSTM、CNN-BiLSTM神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好的解决风电预测精度不高的问题。

    Abstract:

    To solve the problem of low wind power prediction accuracy caused by uncertainty and volatility of wind speed, a combined ICEEMDAN-VMD-IGWO-BILSTM model based on ICEEMDAN-VMD, improved Grey Wolf algorithm (IGWO) and BiLSTM was proposed. Firstly, the number of modal components after combinatorial modal decomposition is limited to avoid insufficient decomposition. Secondly, lens imaging reverse learning, nonlinear convergence factor and fusion with Cauchy variation algorithm are introduced to improve the Grey Wolf algorithm to optimize the bidirectional long short-term memory neural network. Then, IGWO-BiLSTM prediction model is established for each decomposed sub-sequence, and finally the predicted value of each sub-sequence is superimposed to obtain the final predicted value. The model is applied to actual wind power prediction. Experimental results show that MAE, MSE and RMSE of ICEEMDAN-VMD-IGWO-BiLSTM combined model are 4.9189MW, 32.3683MW and 5.6893MW, respectively. Compared with CNN-LSTM, CNN-BiLSTM neural network model and other combined models, the prediction accuracy has been significantly improved, which can effectively solve the problem of low prediction accuracy of wind power.

    参考文献
    相似文献
    引证文献
引用本文

任爽,姚大学,刘俊享,程天祥.基于组合模态分解与IGWO-BiLSTM的短期风电功率预测计算机测量与控制[J].,2025,33(9):83-90.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-21
  • 最后修改日期:2024-08-26
  • 录用日期:2024-08-27
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码