基于深度学习的芯片封装缺陷检测系统设计
DOI:
CSTR:
作者:
作者单位:

河海大学信息科学与工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(61701169)。


Design of a Chip Packaging Defect Detection System Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对集成电路芯片封装过程中普遍存在的缺陷问题,设计基于深度学习的芯片封装缺陷检测系统。通过构建高效的图像采集系统,开发了基于YOLOv7算法的缺陷检测软件,并创新性地设计了一套适用于多种封装类型的小型封装芯片高速转塔式测试分选装置及基于PC上位机的控制系统。该系统实现了对芯片封装缺陷的高速、高精度在线检测与识别,同时完成了缺陷芯片的自动剔除,有效提高了产品质量信息反馈的准确性与时效性。实验结果表明,该检测系统识别准确率超过90%,检测速度达到22.5FPS以上,并在实际生产环境中稳定运行,满足了集成电路芯片封装工程上对于高效缺陷检测与剔除的需求。

    Abstract:

    Aiming at the prevalent defect issues in the packaging process of integrated circuit chips, a defect detection system based on deep learning for chip packaging is designed. By constructing an efficient image acquisition system, defect detection software based on the YOLOv7 algorithm is developed. Moreover, a set of high-speed turret testing and sorting device suitable for various types of small packaged chips and a control system based on a PC host computer are innovatively designed. This system achieves high-speed, high-precision online detection and recognition of chip packaging defects, while simultaneously completing the automatic rejection of defective chips, effectively enhancing the accuracy and timeliness of product quality information feedback. Experimental results demonstrate that the detection system achieves a recognition accuracy rate exceeding 90%, a detection speed of over 22.5FPS, and operates stably in actual production environments, meeting the requirements of efficient defect detection and rejection in integrated circuit chip packaging engineering.

    参考文献
    相似文献
    引证文献
引用本文

郑明杰,潘桥,许海燕.基于深度学习的芯片封装缺陷检测系统设计计算机测量与控制[J].,2025,33(8):45-53.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-16
  • 最后修改日期:2024-08-21
  • 录用日期:2024-08-23
  • 在线发布日期: 2025-09-05
  • 出版日期:
文章二维码