基于改进YOLOv5s的遮挡烟丝检测方法
DOI:
CSTR:
作者:
作者单位:

西安工程大学机电工程学院

作者简介:

通讯作者:

中图分类号:

S572;TP183;TP391.41

基金项目:

陕西省自然科学基础研究计划资助项目(2024JC-YBMS-489);陕西省自然科学基础研究计划资助项目(2023-JC-YB-288);湖北省数字化纺织装备重点实验室开放课题(KDTL2020005)


A masking tobacco detection method based on improved YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决生产环境中烟丝检测因粘连、遮挡现象而引发的检测精度不足等问题,提出一种基于改进YOLOv5s的遮挡烟丝检测方法。利用DCN v2C3模块替换YOLOv5s网络颈部的C3模块,提取烟丝深层次的特征信息,提升网络模型的空间变换能力及其泛化到不同形状目标的能力;引入Soft-NMS算法,平滑抑制冗余的边界框,增强对遮挡烟丝的识别能力;采用Alpha-CIOU损失函数,以优化模型的边界框定位精度。实验结果表明,与原始方法相比,改进方法的检测精度提高了2.7%。该方法在提高了检测精度的同时减少了计算量。

    Abstract:

    To address the issues of insufficient detection accuracy caused by the overlapping and occlusion phenomena in tobacco shred detection in production environments, a method for detecting occluded tobacco shreds based on improved YOLOv5s is proposed. The DCN v2C3 module is utilized to replace the C3 module in the neck part of the YOLOv5s network, extracting deep-level feature information of tobacco shreds and enhancing the spatial transformation capability of the network model as well as its ability to generalize to different shaped targets. The Soft-NMS algorithm is introduced to smoothly suppress redundant bounding boxes and strengthen the recognition capability of occluded tobacco shreds. The Alpha-CIOU loss function is adopted to optimize the bounding box positioning accuracy of the model. Experimental results show that compared with the original method, the detection accuracy of the improved method is increased by 2.7%. This method improves detection accuracy while reducing the amount of calculations.

    参考文献
    相似文献
    引证文献
引用本文

朱少俊,金守峰,昝 杰,李 毅,郭彩霞.基于改进YOLOv5s的遮挡烟丝检测方法计算机测量与控制[J].,2025,33(9):47-55.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-05
  • 最后修改日期:2024-08-14
  • 录用日期:2024-08-16
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码