基于改进SOM神经网络的机电类特种设备故障自动检测系统设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于机电类特种设备的结构复杂且运行环境多样,导致设备在运行过程中容易出现各种故障。传统的SOM神经网络在应用于机电类特种设备故障检测时,由于其网络结构固定、收敛速度慢等问题,使该网络在训练过程中无法充分学习故障特征,在检测过程中易产生误报和漏报,导致检测的准确率不高。对此,提出基于改进SOM神经网络的机电类特种设备故障自动检测系统设计方法。在硬件设计方面,对机电类特种设备运行数据的采集元件、处理元件进行改装,通过电路滤波、隔离的方式,实现硬件系统的抗干扰处理。构建机电类特种设备故障自动检测系统数据库,保证数据的完整性和可检索性。在软件设计方面,根据机电类特种设备不同故障特征,设定故障检测标准,确保系统能够准确识别并判定设备故障。将硬件系统中的数据采集元件安装到待检测特种设备内部,实现特种设备目标运行数据的自动采集。根据机电类特种设备故障自动检测需求,对SOM神经网络结构和工作原理进行改进,并基于改进后的算法迭代学习特种设备的运行数据,输出特种设备运行特征的提取结果。采用特征匹配的方式,识别设备是否发生故障以及故障的具体类型,实现系统的故障自动检测功能。从系统测试结果中可以看出,优化设计系统故障状态误检率和漏检率均在5%以下,即具有更高故障检测准确率。

    Abstract:

    Due to the complex structure and diverse operating environments of electromechanical special equipment, it is prone to various faults during operation. When traditional SOM neural networks are applied to fault detection of electromechanical special equipment, due to their fixed network structure and slow convergence speed, the network cannot fully learn fault features during training, and is prone to false alarms and missed alarms during the detection process, resulting in low detection accuracy. A design method for an automatic fault detection system for electromechanical special equipment based on an improved SOM neural network is proposed. In terms of hardware design, the collection and processing components of the operation data of electromechanical special equipment are modified, and the anti-interference processing of the hardware system is achieved through circuit filtering and isolation. Build a database for automatic fault detection system of electromechanical special equipment to ensure the integrity and retrievability of the data. In terms of software design, fault detection standards are set based on the different fault characteristics of electromechanical special equipment to ensure that the system can accurately identify and determine equipment faults. Install the data acquisition components in the hardware system into the special equipment to be tested, achieving automatic collection of target operating data for the special equipment. According to the automatic fault detection requirements of electromechanical special equipment, the structure and working principle of SOM neural network are improved, and the operation data of special equipment is iteratively learned based on the improved algorithm, and the extraction results of special equipment operation characteristics are output. By using feature matching, identify whether the equipment has malfunctioned and the specific type of malfunction, and achieve the automatic fault detection function of the system. From the system test results, it can be seen that the error detection rate and missed detection rate of the optimized design system"s fault state are both below 5%, indicating a higher fault detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

张鑫.基于改进SOM神经网络的机电类特种设备故障自动检测系统设计计算机测量与控制[J].,2025,33(8):37-44.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-05
  • 最后修改日期:2024-08-19
  • 录用日期:2024-08-21
  • 在线发布日期: 2025-09-05
  • 出版日期:
文章二维码