基于YOLOv5的导线端点轻量化检测方法
DOI:
CSTR:
作者:
作者单位:

中国民航大学电子信息与自动化学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

中国民航大学实验技术创新(2023CXJJ57),教育部产学合作协同育人项目(230804679033239)。


Light Weight Detection Method of Experimental Wire Endpoints Based on YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    导线端点检测对于实现人工智能实验接线检查至关重要,针对现有导线端点检测模型参数庞大、难以部署至移动端的问题,提出一种基于YOLOv5的导线端点轻量化检测方法;将CSPDarkNet替换为PPLCNet作为骨干网络,保持较高检测精度的同时降低模型的复杂度,在特征融合部分融入ConvNeXt Block加速网络提取和融合复杂目标的特征信息,增强对目标的特征提取能力,用更轻量的鬼影混洗卷积替换颈部网络中的卷积层,降低计算成本;实验结果表明,改进模型相比未改进模型计算量、参数量、模型体积下降了66.6%、68.4%、65.2%,mAP提高了0.9%,保证轻量化的同时提高了检测精度。

    Abstract:

    Wire endpoint detection is crucial for experimental wiring inspection using artificial intelligence. To address the problem that the existing wire endpoint detection model has large parameters and is difficult to deploy on mobile terminals, this paper proposes a lightweight wire endpoint detection method based on YOLOv5. CSPDarkNet was replaced by PPLCNet as the backbone network to maintain high detection accuracy while reducing the complexity of the model. ConvNeXt Block was integrated into the feature fusion part to accelerate network extraction and fusion of complex target feature information, and enhance the feature extraction capability of the target. The convolutional layer in the neck network is replaced by a lighter convolutional GSConv to reduce the computational cost. The experimental results show that the calculation amount, parameter number and model volume of the improved model are reduced by 66.6%, 68.4% and 65.2% compared with the unimproved model, and the mAP is increased by 0.9%, which ensures the lightweight and improves the detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

张长勇,张轩铖,李玉洲,方俊杰.基于YOLOv5的导线端点轻量化检测方法计算机测量与控制[J].,2025,33(8):22-28.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-02
  • 最后修改日期:2024-08-06
  • 录用日期:2024-08-09
  • 在线发布日期: 2025-09-05
  • 出版日期:
文章二维码