基于新型深度递归网络的空调机组故障诊断研究
DOI:
CSTR:
作者:
作者单位:

重庆理工大学两江人工智能学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on fault diagnosis of air conditioning unit based on new deep recursive network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对空调机组故障运行数据特征参数耦合且时序特征难以提取的问题,提出一种基于自注意深度循环神经网络SA-DRNN的故障诊断模型;该模型根据空调机组传感器与系统结构的物理关系将变量划分为多个子块,在子块中挖掘空调机组运行数据的特征信息,并通过自注意力层加强关键特征对故障诊断结果的影响权重,然后将各子块模型输出的局部特征利用自注意力机制加权融合以构建全局特征,并使用归一化指数函数Softmax进行分类;与对照方法相比,具有长短时记忆功能的深度循环神经网络DRNN-LSTM方法在空调机组常见故障诊断方面表现更优,对系统故障识别能力更强。

    Abstract:

    It mainly aims at a fault diagnosis model based on self-attention deep cyclic neural network SA-DRNN was proposed to solve the problem that the feature parameters of air conditioning unit fault operation data are coupled and the time series features are difficult to extract. The model divides variables into multiple sub-blocks according to the physical relationship between the air conditioning unit sensor and the system structure, mining the feature information of the air conditioning unit operation data in the sub-blocks, strengthening the influence weight of key features on the fault diagnosis results through the self-attention layer, and then using the self-attention mechanism to weight and fuse the local features output by each sub-block model to build the global features. Normalized exponential function Softmax is used for classification. Compared with the control method, the DRNN-LSTM method with the function of short and long time memory has better performance in the common fault diagnosis of air conditioning units, and has stronger ability to identify system faults.

    参考文献
    相似文献
    引证文献
引用本文

王华秋,朱行行.基于新型深度递归网络的空调机组故障诊断研究计算机测量与控制[J].,2025,33(8):14-21.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-23
  • 最后修改日期:2024-08-06
  • 录用日期:2024-08-09
  • 在线发布日期: 2025-09-05
  • 出版日期:
文章二维码