基于深度强化学习的堤坝巡检机器人避障方法
DOI:
CSTR:
作者:
作者单位:

1.上海勘测设计研究院有限公司;2.西北工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61473229);航空科学基金(20181353013);教育部中国高校产学研联合基金(2021ZYA03006)资助。


Obstacle Avoidance Method of Dam Inspection Robot Based on Deep Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决复杂动态环境下的堤坝巡检机器人的自主避障问题,提出一种基于改进深度确定性策略梯度算法的巡检路径避障方法。为提高算法的收敛速度和稳定性,引入优先经验回放机制处理训练样本,并加入随机噪声提高算法对环境的探索能力;为解决算法对环境缺乏先验知识,易于陷入局部迭代的问题,引入了人工势场法提高算法初始阶段的学习效率及快速收敛性;完成了改进算法的状态动作空间、奖励函数和避障训练流程设计。仿真结果表明,改进算法收敛速度快、规划的路径短,使巡检机器人具有更优越的避障能力;经实验验证算法实现了复杂环境下的自主动态避障。

    Abstract:

    Aiming at the problem of autonomous obstacle avoidance of dam inspection robot, an obstacle avoidance method based on Improved Deep Deterministic Policy Gradient (I-DDPG) algorithm is proposed to realize the inspection robot path planning in complex dynamic environment. In order to improve the convergence speed and stability of the algorithm, the prioritized experience replay mechanism is introduced to process the training samples, and also the random noise is added to improve the exploration ability of the algorithm. For the lack of a priori knowledge of the environment in the DDPG algorithm, the gravitational field function method is used to improve the fast convergence and the learning efficiency of the initial stage of the algorithm. The state action space, reward function and obstacle avoidance training process of the improved algorithm are designed. The simulation results show that there are much more advantages while the improved algorithm is employed, they are fast convergence speed, short path length and better obstacle avoidance performance for inspection robot who can successfully avoid dynamic obstacles under unknown complex environment. Through practical application, autonomous dynamic obstacle avoidance in complex environment is realized.

    参考文献
    相似文献
    引证文献
引用本文

张鹏程,胡宁宁,王宵,左登勇,袁冬莉.基于深度强化学习的堤坝巡检机器人避障方法计算机测量与控制[J].,2025,33(7):313-320.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-05
  • 最后修改日期:2024-07-15
  • 录用日期:2024-07-16
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码