基于时空信息联合嵌入和离散融合学习的涡扇发动机剩余寿命预测
DOI:
CSTR:
作者:
作者单位:

青岛科技大学信息科学技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62201314);国家自然科学基金(62201571);强链计划(23-1-2-qdjh-18-gx)


Remaining useful life prediction of turbofan engine based on spatiotemporal information joint embedding and discrete fusion learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的发动机剩余寿命预测方法对发动机多传感器数据利用率不足以及高维冗杂数据特征难以提取的问题,提出了一种基于时空信息联合嵌入和离散融合学习的发动机剩余寿命预测模型;设计了时空信息联合嵌入网络,通过对多传感器数据进行时空信息编码,以有效地嵌入时间序列信息和空间特征信息,协助模型更充分地理解数据内部的关联性;构建了基于注意力的离散融合变分自编码网络,以无监督的方式将时空信息嵌入特征通过码书映射进行量化,进一步通过上下层融合注意力实现并行融合;通过双向时序记忆剩余寿命预测网络综合关键退化特征的前向和后向的语义信息得到预测结果;在航空涡扇发动机数据集上的实验结果表明,所提出的方法能够有效提高发动机的剩余寿命预测精准度,明显优于现有的其他方法。

    Abstract:

    Aiming at the problems of insufficient utilization of multi-sensor data and difficult extraction of high-dimensional redundant data features in existing engine residual life prediction methods, an engine residual life prediction model based on spatiotemporal information joint embedding and discrete fusion learning was proposed. Firstly, a spatio-temporal information joint embedding network is designed to encode the spatio-temporal information of multi-sensor data to effectively embed time series information and spatial feature information to help the model understand the correlation within the data more fully. Then, an attention-based discrete fusion variational self-coding network is constructed to quantify the embedded features of spatio-temporal information through code-book mapping in an unsupervised way, and further achieve parallel fusion through upper-lower fusion attention. Finally, the prediction results are obtained by combining forward and backward semantic information of key degradation features with bidirectional time series memory remaining life prediction module. The experimental results on C-MAPSS show that the proposed method can effectively improve the accuracy of the remaining life prediction of the engine, which is significantly better than other existing methods.

    参考文献
    相似文献
    引证文献
引用本文

杨晓祺,李福海,张德民,王均磊,马杰,陈锌,杨凯旋,刘扬,赵振.基于时空信息联合嵌入和离散融合学习的涡扇发动机剩余寿命预测计算机测量与控制[J].,2025,33(9):36-46.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-04
  • 最后修改日期:2024-07-10
  • 录用日期:2024-07-15
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码