基于生成对抗网络的飞机舱门图像涂装增广方法
DOI:
CSTR:
作者:
作者单位:

1.北京博维航空设施管理有限公司;2.电子科技大学

作者简介:

通讯作者:

中图分类号:

U8

基金项目:


A Painting Augmentation Method for Aircraft Door Image Based on Generative Adversarial Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    舱门检测网络是自动驾驶登机桥检测舱门的重要实现途径。而在舱门图像带有复杂涂装的场景下,舱门检测网络对舱门图像的检测准确率、召回率和mAP大幅降低。针对这一问题,提出了基于生成对抗网络的舱门图像涂装增广方法,用以提高舱门检测网络训练集中带复杂涂装的图像样本的数量,从而提高舱门检测网络在复杂涂装场景下的检测准确率、召回率和mAP。通过将待增广图像的边缘图像和涂装图像的边缘图像进行边缘融合,再经过已训练的生成对抗网络填色,实现舱门图像数据集的涂装增广。实验证明,与传统的基础增广方法相比,基于生成对抗网络的舱门图像涂装增广方法对Yolov5s的检测准确率、召回率和mAP提升更高。

    Abstract:

    The door detection network is an important way of the autonomous boarding bridge detects the door. However, in the scenario where the door image has complex painting, the detection accuracy, recall rate and mAP of the door detection network for the door image are greatly reduced. To address this problem, a door image painting augmentation method based on generative adversarial network is proposed to increase the number of image samples with complex painting in the door detection network training set, thereby improving the detection accuracy, recall rate and mAP of the door detection network in complex paint scenes. The paint augmentation of the door image dataset is achieved by edge fusion of the edge image of the image to be augmented and the edge image of the painting image, and then coloring through the trained generative adversarial network. Experiments show that compared with the traditional basic augmentation methods, the door image painting augmentation method based on the generative adversarial network has a higher improvement in the detection accuracy, recall rate and mAP of Yolov5s.

    参考文献
    相似文献
    引证文献
引用本文

李旭,黄川峻.基于生成对抗网络的飞机舱门图像涂装增广方法计算机测量与控制[J].,2025,33(7):188-194.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-03
  • 最后修改日期:2024-07-22
  • 录用日期:2024-07-23
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码