基于神经网络散斑干涉图像去噪的综合性实验设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

G642?

基金项目:

陕西省自然科学基础研究计划项目


Investigation of Speckle Interferometry Image Denoising Using Neural Network-Based Experimental Methods
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在科学研究和实际工程项目中,需要对光学粗糙表面的位移、形变、振动及应变等物理量进行高精度测量。散斑干涉测量是一种针对光学粗糙表面的高精度无损检测技术,然而在测量过程中,干涉条纹图像不可避免地包含大量的相干散斑噪声以及环境噪声,严重影响后续的相位解调和解包裹精度和准确性。因此设计了一种基于DnCNN神经网络模型的图像降噪实验模型,设计搭建干涉测量硬件系统,编写软件实现对图像的采集和增强。利用计算机模拟的散斑干涉条纹图像生成数据集,完成了神经网络的设计和训练。实验结果表明,设计方法能够有效去噪,减少了白色噪点,且网络的拟合效果达到最佳状态。经过实验测试,在去噪性能的评估测试中,与传统的滤波方法相比,DnCNN展现出了显著优势,其中信噪比和散斑指数表现突出。

    Abstract:

    In scientific research and practical engineering projects, it is necessary to measure the displacement, deformation, vibration and strain of optical rough surfaces with high precision. Electronic speckle interferometry is a high-precision non-destructive testing technique for optical rough surfaces, but in the measurement process, the interference fringe image inevitably contains a large amount of coherent speckle noise and environmental noise, which seriously affects the subsequent phase demodulation and unwrapping accuracy and accuracy. Therefore, an experimental model of image noise reduction based on DnCNN neural network model was designed, hardware system was designed and built, and software was written to realize the acquisition and enhancement of images. The computer simulated speckle interference fringe image was used to generate the dataset, and the design and training of the neural network were completed. Experimental results show that the design method can effectively denoise, reduce white noise, and achieve the best fitting effect of the network. Experimental tests show significant advantages over traditional filtering methods in the evaluation of denoising performance, among which the signal-to-noise ratio and speckle index are outstanding.

    参考文献
    相似文献
    引证文献
引用本文

李珂嘉,赵自新,马跃洋,尹昱东,张璐.基于神经网络散斑干涉图像去噪的综合性实验设计计算机测量与控制[J].,2025,33(7):203-209.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-27
  • 最后修改日期:2024-07-15
  • 录用日期:2024-07-16
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码