基于改进ResUnet的金属表面缺陷分割
DOI:
CSTR:
作者:
作者单位:

中国航发哈尔滨东安发动机有限公司

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:


Segmentation of metal surface defect based on improved ResUnet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对金属表面缺陷因尺寸和形状多样化导致检出率低,检出形状差异大等问题,提出了一种基于改进ResUnet的表面缺陷语义分割算法,此方法以ResUnet网络结构为基础架构,使用先进的ConvNeXt-T改进骨干网络,提取更具代表性的特征;在解码阶段添加全局上下文模块,增强模型的全局上下文建模能力;同时融合解码阶段的多级多尺度特征,使模型更适应缺陷尺寸和大小多变的钢铁表面缺陷,提升缺陷识别精度。在谢韦尔钢铁公司提供的钢铁表面缺陷数据集上开展了所提缺陷识别算法的有效性定量和定性验证,与对比方法相比,该方法的 值达到了最高的0.7784,且单张图像在GPU上的运行时间只需14.7ms,同时缺陷分割结果与标签最接近,说明该方法具有较好的鲁棒性、准确性和高效性。

    Abstract:

    A surface defect semantic segmentation algorithm based on improved ResUnet is proposed to address the issues of low detection rate and large differences in detection shapes caused by the diversity of size and shape of metal surface defects. This method is based on the ResUnet network structure and uses advanced ConvNeXt-T to improve the backbone network and extract more representative features; Design and add a global context module during the decoding phase to enhance the model"s ability to model global context; At the same time, the fusion of multi-level and multi-scale features in the decoding stage makes the model more suitable for steel surface defects with variable sizes and sizes, improving the accuracy of defect recognition. The effectiveness of the proposed defect recognition algorithm was quantitatively and qualitatively validated on the steel surface defect dataset provided by Xavier Steel Company. Compared with the comparison method, the value of the proposed method reached the highest of 0.7784, and the running time of a single image on the GPU was only 14.7ms. At the same time, the subjective visual effect of the defect segmentation results of the proposed method was closest to the label, indicating that the method has good robustness, accuracy, and efficiency.

    参考文献
    相似文献
    引证文献
引用本文

周子杰,李琳,薛殿龙,李家军,黄伟龙,陈德阳.基于改进ResUnet的金属表面缺陷分割计算机测量与控制[J].,2025,33(9):191-199.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-24
  • 最后修改日期:2024-08-23
  • 录用日期:2024-08-23
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码