基于深度学习和元启发式算法的臭氧浓度集合预报
DOI:
CSTR:
作者:
作者单位:

1.海南大学 网络空间安全学院密码学院;2.海南大学

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

教育部供需对接就业育人项目(2023122798868);教育部产学合作协同育人项目(220902070162538);海南省自然科学基金(623RC455,623RC457);海南大学科研启动(KYQD(ZR)-22096,KYQD(ZR)-22097)


Ensemble Forecast for Concentration of Ozone based on Deep Learning and Metaheuristic Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对普遍而严重的空气污染问题,特别是日益增加的臭氧污染对环境和公众健康带来的威胁,提出了一种融合长短期记忆网络、时间卷积网络、Transformer三种深度学习模型和元启发式算法开普勒优化算法的集合预报模型。通过分析臭氧与其他空气污染物及气象要素的相关性,选定了预报因子;分别搭建了长短期记忆网络、时间卷积网络、Transformer预报模型并开展独立的预报;采用开普勒优化算法融合三种深度学习模型的预报结果从而得到最终的预报结果。实验结果显示在北京地区臭氧小时浓度的多步预报中,提出的集合预报模型的均方根误差、平均绝对误差和决定系数均优于单一的深度学习模型长短期记忆网络、时间卷积网络和Transformer以及统计模型多元线性回归和传统机器学习模型随机森林。研究结果表明融合深度学习和元启发式算法的集合预报策略能有效提升预报模型的准确性和稳定性,验证了深度学习集合预报方法对臭氧污染预报的可行性。

    Abstract:

    In response to the widespread and severe problem of air pollution, especially the mounting threat of ozone pollution to environmental and public health, an ensemble forecast model that combines three deep learning models LSTM, TCN, Transformer and the metaheuristic algorithm Kepler optimization algorithm is proposed. Predictive factors are selected based on the correlation analysis among ozone, other air pollutants and meteorological elements. Independent forecast is conducted by LSTM, TCN and Transformer respectively. The Kepler optimization algorithm is employed to integrate the predictive outputs of above three deep learning models to obtain final predictive results. Experimental results indicate that, on the multi-step forecast for hourly concentration of ozone in Beijing, the proposed ensemble forecast model surpasses deep learning models LSTM, TCN and Transformer as well as classical multiple linear regression and random forest models with RMSE, MAE and R2. This demonstrates that the ensemble forecast strategy integrating deep learning with metaheuristic algorithm could effectively improve the accuracy and stability of predictor, and the ensemble forecast approach based on deep learning is feasible to ozone concentration prediction.

    参考文献
    相似文献
    引证文献
引用本文

曹君乾,李欢,莫欣岳.基于深度学习和元启发式算法的臭氧浓度集合预报计算机测量与控制[J].,2025,33(7):195-202.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-23
  • 最后修改日期:2024-06-26
  • 录用日期:2024-07-01
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码