基于深度学习的钢板表面缺陷检测研究综述
DOI:
CSTR:
作者:
作者单位:

西安科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

中国高校产学研创新基金


A Review of Research on Steel Plate Surface Defect Detection Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钢板作为现代制造业的基石,其表面质量对产品的性能和可靠性具有决定性作用。因此,钢板表面缺陷检测具有重要的研究意义和应用价值。钢板表面缺陷检测研究面临的主要挑战包括钢板表面缺陷类型多样、特征不明显以及实时性要求高。采用深度学习技术对钢板表面缺陷检测进行研究,系统总结了钢板表面缺陷常用的数据集及目标检测算法在表面缺陷中的应用,同时全面整理并分析了这些算法的优缺点。探讨了有监督学习、无监督学习和半监督学习等检测方法在钢板表面缺陷检测中的应用,评估了当前算法性能的关键指标,讨论了未来钢板表面缺陷检测面临的挑战,并对未来的研究趋势进行了展望。

    Abstract:

    Steel plates, as the cornerstone of modern manufacturing, play a decisive role in the performance and reliability of products. Therefore, the detection of steel plate surface defects is of great research significance and application value. The main challenges faced by research on steel plate surface defect detection include the diversity of defect types, the indistinct features, and the high requirement for real-time detection. By using deep learning technology to study steel plate surface defect detection, this research systematically summarizes the commonly used datasets and the application of target detection algorithms in surface defects. It also comprehensively organizes and analyzes the advantages and disadvantages of these algorithms. The application of supervised learning, unsupervised learning, and semi-supervised learning methods in steel plate surface defect detection is discussed, key indicators for evaluating the current algorithm performance are evaluated, challenges facing future steel plate surface defect detection are discussed, and future research trends are prospected.

    参考文献
    相似文献
    引证文献
引用本文

廖晓群,李丹,徐清钏.基于深度学习的钢板表面缺陷检测研究综述计算机测量与控制[J].,2025,33(7):1-10.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-17
  • 最后修改日期:2024-06-28
  • 录用日期:2024-07-01
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码