基于改进YOLOv5s的金属表面缺陷检测
DOI:
CSTR:
作者:
作者单位:

南京工程学院 人工智能产业技术研究院

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

江苏省产学研合作项目 (BY20230656)


Keywords: Object Detection; Metal Surface Defects; Deep Learning; Loss Function; Attention Mechanism;
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    金属表面缺陷在飞机和航天器制造等领域易致结构失效,带来巨大的事故风险。针对传统YOLOv5s算法检测金属表面冲孔、丝状斑点、月牙形缺口等性能差的问题,现提出一种改进的YOLOv5s算法。该算法将Ghost网络加入到Backbone部分;在Neck网络中增加了MHSA注意力机制;将原损失函数替换为DIOU。经实验验证,改进后的网络与原网络相比,mAP@0.5提升了3.2%;提高了模型的检测精度并且误检、漏检率低,证实了该方法在金属表面缺陷检测上的有效性。

    Abstract:

    Metal surface defects can easily lead to structural failure in aircraft and spacecraft manufacturing, which brings great accident risk. Aiming at the poor performance of traditional YOLOv5s algorithm in detecting metal surface punching, filamentous spots and crescent notch, an improved YOLOv5s algorithm is proposed. This algorithm adds Ghost network to Backbone. The MHSA attention mechanism was added in the Neck network. Replace the original loss function with DIOU. The experimental results show that the improved network, compared with the original network, improves the detection accuracy of the model by 3.2%, and has low false detection and missed detection rates, which confirms the effectiveness of the proposed method in metal surface defect detection.

    参考文献
    相似文献
    引证文献
引用本文

顾嘉炜,焦良葆,焦波,孟琳,李笑笑.基于改进YOLOv5s的金属表面缺陷检测计算机测量与控制[J].,2025,33(7):46-53.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-14
  • 最后修改日期:2024-06-04
  • 录用日期:2024-06-05
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码