摘要:针对变工况条件下因源域和目标域样本数据分布差异大造成滚动轴承故障诊断准确率较低的问题,提出一种新的迁移学习方法——卷积注意力特征迁移学习(Convolutional Attention-based Feature Transfer Learning, CAFTL),并用于变工况条件下的滚动轴承故障诊断。在所提出的CAFTL中,将源域和目标域样本经过多头自注意力计算再经过归一化之后,输入到卷积神经网络中得到对应的源域和目标域特征;然后通过域自适应迁移学习网络将两域特征投影到同一个公共特征空间内;接着,利用由源域有标签样本构建的分类器进行分类;最后,利用随机梯度下降(Stochastic Gradient Descent, SGD)方法对CAFTL进行训练和参数更新,得到CAFTL的最优参数集后将参数优化后的CAFTL用于滚动轴承待测样本的故障诊断。滚动轴承故障诊断实例验证了所提出的方法的有效性。