基于改进YOLOv5的飞机舱门识别与定位方法研究
DOI:
CSTR:
作者:
作者单位:

中国民航大学电子信息与自动化学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Research on Aircraft door identification and Locationmethod based on improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机场特种车辆的自动靠机是未来智慧机场发展的必然要求,实现自动靠机的关键是对飞机舱门进行准确识别与定位;针对于此问题,提出一种基于改进YOLOv5和单目视觉的舱门识别与定位方法,通过在模型中加入了一种轻量化的卷积注意力模块(CBAM,convolutional block attention module),提高了算法对飞机舱门的特征提取能力;针对YOLOv5的重复特征提取问题,引入了空间金字塔池化结构(SPPCSPC,spatial pyramid pooling cross stage paritial connection),并改进分组卷积组数为4,提高了算法的检测精度;通过获取候选框中角点的像素,利用空间几何关系,实现了对舱门准确的三维定位。实验结果表明,改进后的YOLOv5算法mAP达到96.5%,相比原有算法提升了5.6%。在舱门前方19 m和1 m处时,实时最大定位误差分别为0.15 m和0.01 m,能够满足特种车辆靠机完成后与舱门保持5-10 cm的安全距离要求。

    Abstract:

    The automatic docking of airport special vehicles is an inevitable requirement for the development of smart airports in the future; The key to achieving automatic docking is to accurately identify and position the aircraft door.Aiming at this problem,proposes a door recognition and position method based on improved YOLOv5 and monocular vision. By adding a lightweight convolutional block attention module (CBAM) to the model, the algorithm improves its ability to extract features from aircraft doors; To solve the problem of repetitive feature extraction in YOLOv5, a spatial pyramid pooling cross stage partial connection (SPPCSPC) is introduced, and the number of group convolution groups is improved to 4, improving the detection accuracy of the algorithm; By obtaining the pixels of corner points in the candidate frame and utilizing spatial geometric relationships, accurate three-dimensional positioning of the aircraft door is achieved. The experimental results show that the improved YOLOv5 algorithm mAP reaches 96.5%, which is 5.6% higher than the original algorithm. At 19 m and 1 m in front of the aircraft door, the real-time maximum positioning error is 0.15 m and 0.01 m, respectively, which can meet the requirements of maintaining a safe distance of 5-10 cm from the aircraft door after the completion of docking of special vehicles.

    参考文献
    相似文献
    引证文献
引用本文

张长勇,郭聪,李玉洲,张朋武.基于改进YOLOv5的飞机舱门识别与定位方法研究计算机测量与控制[J].,2024,32(1):142-149.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-22
  • 最后修改日期:2023-04-04
  • 录用日期:2023-04-06
  • 在线发布日期: 2024-01-29
  • 出版日期:
文章二维码