视频监控领域基于自适应学习因子与积分通道特征的核相关目标跟踪算法

A Improved Kernelized Correlation Tracking Algorithm Based on Integral Channel Feature and Adaptive Learning Factor in Video Surveillance
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对复杂场景下单一特征跟踪算法适应性不强的问题,提出一种基于积分通道特征的核相关目标跟踪算法,该算法利用积分通道特征丰富多样的特征信息与高效的计算效率,将不同通道的特征整合到核相关模型中,可以克服单一通道特征对目标区域描述不足的缺陷。同时,本文也提出了一种自适应学习因子策略,增强了模型的泛化能力。大量的定性定量实验表明本文所提的算法的跟踪性能超过传统的核相关跟踪算法,对复杂的跟踪场景具有更强的鲁棒性与抗干扰能力。

    Abstract:

    Aiming at the problem that the single feature based tracking algorithm has weak?adaptability?in the complex scene, a improved kernelized correlation object tracking algorithm based on integral channel feature is proposed, which uses the integral channel feature with rich and diverse feature information and efficient calculation efficiency. These features are integrated into the kernelized correlation model, which can overcome the shortcomings of the single channel feature for describing the object area. In addition, an adaptive learning factor strategy is proposed, which enhances the generalization ability of the model. A large number of qualitative and quantitative experiments show that our proposed algorithm has more robust performance and anti-interference ability than the traditional KCF algorithm, which is suitable for engineering application.

    参考文献
    [1]郑浩,?董明利,?潘志康.?基于背景加权的尺度方向自适应均值漂移算法[J].计算机工程与应用, 2016, 52(22). doi: 10.3778/j.issn.1002-8331.1604-0175
    [2]徐少飞,刘政怡,桂斌. 基于循环核矩阵的自适应目标跟踪算法[J].计算机工程与应用, 2016, 52(20).
    doi:10.3778/j.issn.1002-8331.1412-0335
    [3]吴盈,刘哲等.?基于随机局部均值Hash特征的在线学习目标跟踪[J].计算机工程与应用, 2016, 52(14):21-27.
    [4]曹义亲,周小辞,黄晓生等. 基于压缩感知的互补特征加权目标跟踪算法[J].计算机工程与应用, 2016, 52(19):110-116.
    [5]汤春明,卢永伟.?基于改进的稀疏重构算法的行人异常行为分析[J]. 计算机工程与应用, 2017, 53(8):98-104.
    [6]I. Matthews, T. Ishikawa, S. Baker, The template update problem, IEEE Trans. Pattern Anal. Mach. Intell. 26(6),(2004),810-815.
    [7]A.O. Balan and M.J. Black, An adaptive appear-ance model approach for model-based articulated object tracking,in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, June 2006, vol. 1, pp. 758–765.
    [8]D.S. Bolme, J.R. Beveridge, B.A. Draper, and Yui Man Lui, Visual object tracking using adaptive correlation filters, in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, June 2010, pp. 2544–2550.
    [9]K. Briechle and U. D. Hanebeck, Template Matching Using Fast Normalized Cross Correlation, In Aerospace/Defense Sensing, Simulation, and Controls, pp. 95–102, (2001).
    [10]D. Comaniciu, V. Ramesh and P. Meer, Real-Time Tracking of Non-Rigid Objects Using Mean Shift, In Proceedings IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 142–149, (2000).
    [11]Y. Wu, J. Lim, and M. H. Yang, Online object tracking: A benchmark, in CVPR, 2013
    [12]K. Zhang, L. Zhang, and M.-H. Yang, Real-time compressive tracking, in ECCV, 2012。
    [13]P. Dollar, Z. Tu, P. Perona, and S. Belongie, Integral Channel Features, BMVC 2009.
    [14]D.A. Ross, J. Lim, R.S. Lin, M.H. Yang. Incremental learning for robust visual tracking, Int. J. Comput. Vision 77 (1-3), (2008), 125-141.
    [15]W.Zhong, H.Lu, M.H.Yang, Robust object tracking via sparse collaborative appearance model, IEEE Trans. Image Process. 23 (5), (2014) 2356–2368.
    [16]Kalal, Mikolajczyk, and Matas, Tracking Learning Detection, Pattern Analysis and Machine Intelligence?2011.
    [17]J.F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized correlation filters,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.
    [18]Zhonghe Tang, Shengzhe Wang et al. Bayesian Framework with Non-local and Low-rank Constraint for Image Reconstruction, in Journal of Physics: Conference Series,CCISP2017. 787(1). doi: 10.1088/ 1742-6596/ 787/1/012008.
    [19]A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, 1097-1105.
    [20]苏巧平,刘原等,基于稀疏表达的多示例学习目标追踪算法[J], 计算机工程,?2013,?39(3):213-217.
    [21]Hilke Kieritz;?Stefan Becker et al. Online multi-person?tracking?using?Integral?Channel?Features, in 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2016, 122-130.
    [22]M Danelljan?, FS Khan et al. Adaptive Color Attributes for Real-Time Visual Tracking, in Computer Vision & Pattern Recognition?,?2014?:1090-1097.
    [23]JF Henriques?, C Rui. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels, in?European Conference on Computer Vision?, 2012?,?7575?(1)?:702-715.
    [24]Kaihua Zhang, Lei Zhang, Ming-Hsuan Yang,and David Zhang,?Fast Trackingvia Spatio-Temporal Context Learning, in Computer Science,?2013.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张桃明.视频监控领域基于自适应学习因子与积分通道特征的核相关目标跟踪算法计算机测量与控制[J].,2018,26(3):212-215.

复制
分享
文章指标
  • 点击次数:1605
  • 下载次数: 815
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-11-02
  • 最后修改日期:2017-12-04
  • 录用日期:2017-12-04
  • 在线发布日期: 2018-03-29
文章二维码