基于多通道sEMG小波包分解特征的人手动作模式识别方法
DOI:
CSTR:
作者:
作者单位:

浙江工业大学 机械工程学院,浙江工业大学 机械工程学院,浙江工业大学 机械工程学院,浙江工业大学 机械工程学院,浙江工业大学 机械工程学院,浙江工业大学 机械工程学院,浙江工业大学 机械工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51775499),浙江省自然科学基金项目(LQ15E050008),浙江省教育厅科研项目(Y201121563),北京市智能机器人与系统高精尖创新中心开放基金(2016IRS03)


Hand action pattern recognition based on multi-channel sEMG wavelet packet decomposition feature
Author:
Affiliation:

Zhejiang University of Technology,College of Mechanical Engineering,Zhejiang University of Technology,College of Mechanical Engineering,Zhejiang University of Technology,College of Mechanical Engineering,Zhejiang University of Technology,College of Mechanical Engineering,Zhejiang University of Technology,College of Mechanical Engineering,Zhejiang University of Technology,College of Mechanical Engineering,Zhejiang University of Technology,College of Mechanical Engineering

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了满足主动康复训练和人机交互等复杂应用场景对多样性的人手运动模式识别需求,提出了一种基于多通道表面肌电信号sEMG小波包分解特征的人手动作模式识别方法。通过实验对比分析,确定了最佳采样布局方案,通过采集前臂表面肌电信号,设计了基于数字滤波器的肌电信号活动段自动标识算法,能快速准确完成样本动作标签的制作。以原始肌电信号的小波包分解系数作为特征向量训练分类器。通过对比不同隐含层节点数对分类器模式识别准确率的影响,最终确定BP神经网络模式分类器的所有结构参数。设计并训练完成了BP神经网络人手运动模式分类器。对9种手部运动的平均识别率达到93.6%,计算时间小于150ms。

    Abstract:

    In order to meet the needs of complex application scenarios such as active rehabilitation training and human-computer interaction, a hand motion pattern recognition method based on multi-channel surface EMG signal (shorted as sEMG) wavelet packet decomposition is proposed. Through the comparison and analysis via experiments, the optimal sampling layout scheme is determined. The automatic identification algorithm of the EMF signal segment based on the digital filter is designed by collecting the sEMG signal of the forearm surface, and the production of the label can be completed quickly and accurately. The wavelet packet decomposition coefficient of the original sEMG signal is used as the feature vector training classifier. By comparing the influence of different hidden layer nodes on the accuracy of classifier pattern recognition, all the structural parameters of BP neural network model classifier are finally determined. The BP neural network for hand motion pattern classification was designed and trained. The average recognition rate of 9 kinds of hand movements was 93.6% and the calculation time was less than 150ms.

    参考文献
    相似文献
    引证文献
引用本文

都明宇,王志恒,荀一,鲍官军,高峰,杨庆华,张立彬.基于多通道sEMG小波包分解特征的人手动作模式识别方法计算机测量与控制[J].,2018,26(6):160-161.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-28
  • 最后修改日期:2017-11-09
  • 录用日期:2017-11-10
  • 在线发布日期: 2018-07-02
  • 出版日期:
文章二维码