运动相关脑电信号的运动意图预测方法研究
作者:
作者单位:

中国电子科技集团公司第二十七研究所,中国电子科技集团公司第二十七研究所,中国电子科技集团公司第二十七研究所


Research on Prediction of Movement Intention Method Based on Movement-related EEG Signal
Affiliation:

The 27 Research Institute of China Electronics Technology Group Corporation,,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了找出在大脑的后顶叶皮层区(PPC)运动意图预测与运动想象EEG信号之间的关联,联合运动相关电位MRPs与mu/beta节律的事件相关同步/去同步(ERS/ERD)特征,首先用小波包分解WPD重构特征频段的小波包分解系数特征向量,其次采用共空间模式CSP提取空域特征向量,最后利用支持向量机(SVM)进行运动意图预测。通过实验验证,联合运动想象信号中的运动相关电位及mu/beta节律,运动意图预测分类准确率达到85%。得出1)证实了运动相关MRPs可以表征运动准备即运动规划阶段的脑神经机制,2)10Hz以下的mu和beta节律ERS/ERD特征能够体现运动意图的方向。研究结论进一步为精细运动(包括运动方向、速度等其他运动参数)预测提供技术支持。

    Abstract:

    To find out how prediction of motor intention in the posterior parietal cortex(PPC) correlates with motor imagery EEG signal, this study joints movement-related potentials(MRPs) and the ERS/ERD features of mu/beta rhythm, in the first instance, wavelet packet decomposition(WPD) is proposed to reconstruct characteristic frequency band for feature vector of wavelet packet decomposition coefficients; moreover, spatial features vectors are extracted by common spatial patterns(CSP); in the end, support vector machine(SVM) as classifier is utilized to serve for predicting motor intention.Combining MRPs and mu/beta rhythm during motor imagery EEG signal, the classification accuracy is up to 85%. The result indicates that: 1) the brain nerve mechanism of movement readiness and movement planning stages can be characterized by MRPs; 2) the ERS/ERD features of mu/beta rhythm on low frequency components below 10Hz carry information about intended movement direction. And the conclusions further offer a technological support for predicting meticulous movement intention including direction, speed and so on of movement parameters.

    参考文献
    LR Hochberg, MD Serruya, GM Friehs, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia[J]. Nature, 2006, 442(7099): 164-171.
    Wairagkar M, Hayashi Y, Nasuto S. Movement Intention Detection from Autocorrelation of EEG for BCI[M]// Brain Informatics and Health. Springer International Publishing, 2015: 212-221.
    R Xu, N Jiang, C Lin, et al. Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications [J]. IEEE Trans Biomed Eng, 2014, 61 (2) :288-296.
    IK Niazi, N Jiang, O Tiberghien, et al. Detection of movement intention from single-trial movement-related cortical potentials[J]. Journal of Neural Engineering , 2011 , 8 (6) :066009.
    IK Niazi, N Mrachacz-Kersting, N Jiang, et al. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials[J]. IEEE Trans Neural Syst Rehabil Eng, 2012, 20 (4) :595-604.
    Mrachacz-Kersting N, Jiang N, Dremstrup K, et al. A Novel Brain-Computer Interface for Chronic Stroke Patients[M]// Brain-Computer Interface Research. Springer Berlin Heidelberg, 2014: 51-61.
    S Waldert, H Preissl, E Demandt, et al. Hand movement direction decoded from MEG and EEG [J]. Journal of Neuroscience, 2008, 28(4):1000-1008.
    伏云发, 徐保磊, 裴立力等. 基于脑电运动速度想象的单次识别研究[J]. 中国生物医学工程学报. 2011.8, Vol. 30(4): 555-561.
    Kee Y J, Won D O, Lee S W. Classification of left and right foot movement intention based on steady-state somatosensory evoked potentials[C]. //International Winter Conference on Brain-Computer Interface. 2017:106-108.
    G Pfurtscheller, C Neuper. Motor imagery and direct brain-computer communication [J]. Proceedings of the IEEE, 2002, 89 (7) :1123-1134.
    Y Gu, K Dremstrup, D Farina. Single-trial discrimination of type and speed of wrist movements from EEG recordings [J]. Clinical Neurophysiology, 2009, 120(8): 1596-1600.
    OF do Nascimento, KD Nielsen, M Voigt. Movement related parameters modulate cortical activity during imaginary isometric plantar-flexions[J]. Experimental Brain Research, 2006 , 171 (1) :78-90.
    C Neuper, M W?rtz, G Pfurtscheller. ERD/ERS patterns reflecting sensorimotor activation and deactivation [J]. Progress in Brain Research , 2006 , 159 (1) :211-222.
    孙广金. 基于ADS1299的新型脑电采集系统设计[J]. 科技信息,2014 (1) :73-74.
    J Takahashi, D Yasunaga. Reported visual imagery and apparent motion: an event-related potential study [J]. Neuroreport, 2012 , 23 (15) :904-910.
    E.B. Lin, X.P. Shen. Wavelet analysis of EEG signals. Aerospace and Electronics[C]. //IEEE National Conference - NAECON. 2011, 105-110.
    孟明,朱俊青,佘青山等. 多类运动想象脑电信号的两级特征提取方法[J]. 自动化学报, 2016 , 42 (12) :1915-1922.
    KR Müller, M Krauledat, G Dornhege, et al. Machine learning techniques for brain-computer interfaces [J]. Biomedical Engineering , 2004 :11-22.
    O Sporns. The human connectome: a complex network [J]. Ann N Y Acad Sci , 2011 , 1224 (1) :109-125.
    Y He, ZJ Chen, AC Evans. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI [J]. Cerebral Cortex, 2007, 17 (10) :2407-2419.
    联系方式:
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柳建光,袁道任,冯少康.运动相关脑电信号的运动意图预测方法研究计算机测量与控制[J].,2018,26(5):37-41.

复制
分享
文章指标
  • 点击次数:1949
  • 下载次数: 1257
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-09-08
  • 最后修改日期:2017-09-08
  • 录用日期:2017-09-27
  • 在线发布日期: 2018-05-22
文章二维码