基于PCA-KNN聚类的通用在线故障诊断算法设计
作者:
作者单位:

(郑州轻工业学院 软件学院,郑州 450002)

作者简介:

赵晓君(1979-),女,河南南阳人,硕士,讲师,主要从事算法应用和计算机网络方向的研究。 郑 倩(1986),女,河南开封人,博士,副教授,主要从事计算机网络和图像处理方向的研究。

基金项目:

河南省教育厅科学技术研究重点项目(13A520358)。


Design of General On-Line Fault Diagnosis Algorithm Based on PCA-KNN Clustering
Author:
Affiliation:

(Software Engineering College,Zhengzhou University of Light Industry, Zhengzhou 450002,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了克服以往故障诊断算法所具有的难以诊断效率低、诊断精度不高和模型通用性不强的缺点,提出了一种基于PCA主元分析特征优化和KNN聚类的故障诊断法算法;首先,给出了故障诊断的总体模型和诊断原理,然后在故障征兆原始样本数据的基础上,通过PCA主元分析法进行特征优化,获得维数约简的样本数据,从而提高故障诊断的效率;在此基础上,采用训练样本数据对模糊K均值分类器进行训练,并计算每个聚类的距离和阈值;最后,将在线获取的测试样本数据或离线样本数据输入到模糊K均值分类器,获得其所属分类,并采用KNN最近邻算法来获取其K个近邻,根据其与近邻的距离平方和与所属聚类距离平方阈值来判断其是否为故障样本,从而实现故障诊断;以滚动轴承故障诊断试验和模拟电路故障诊断试验为例,实验结果证明了文中方法较其它方法具有诊断效率高和诊断精度高的优点,是一种通用的和可行的在线故障诊断方法。

    Abstract:

    For conquering the problems of traditional fault diagnosis algorithm such as low diagnosis efficiency, low accuracy and the generalization of model is not strong enough, a fault diagnosis algorithm based on Principal Component Analysis feature PCA optimizing, fuzzy k-means and K-Nearest Neighbor clustering is proposed. Firstly, the main model is introduced and diagnosis principle is designed. Then the PCA method is used to realize the feature optimizing and the data after dimension reducing is obtained, so as to improve the diagnosis efficiency. The training sample data is used to train the fuzzy k-means classifier and get the cluster distance and threshold is computed.to get which the classifier it owns to, then the KNN algorithm is used to obtain its K nearest neighbors to compute the sum of distance square between it and them, by comparing the relationship of value of sum of distance square with distance sum threshold it can conclude whether the sample is fault sample or normal sample. The fault diagnosis experiment of antifriction bearing experiment is operated, and the result shows it has the high convergence rapid, diagnosis efficiency and diagnosis accuracy, so the method in this paper can be accepted as a universal fault diagnosis method and has large application foresight.

    参考文献
    [1] Karimi H R, Zapateiro M, Luo N.A linear matrix inequality approach to robust fault defection filter design of linear systems with mixed time varying delays and nonlinear perturbations .Journal of the Franklin Institute, 2010,7(6):957973.
    [2] 孙蓉, 刘胜, 张玉芳.基于参数估计的一类非线性系统故障诊断算法.控制与决策,2014,3(29):506510.
    [3] Bellali B, Hazzaba A, Bousserhane I K, et al.Parameter estimation for fault diagnosis in nonlinear systems by ANFIS .Procedia Engineering, 2012,9(6):20162021.
    [4] 曹伟,丛望,孙明.基于比例差分型迭代学习的故障诊断算法 .系统工程与电子技术,2012,0(34):21062109.
    [5] Bian M M,Shi J,Wang S P.FTA-based fault diagnosis expert system for hydraulic equipment Ec.Fluid Power and Mechatronics(FPM).Beijing:2011:959963.
    [6] 郭金玉,赵璐璐,李元.基于统计特征的不等长间歇过程故障诊断研究.计算机应用研究,2014,1(31):128130.
    [7] Chang Y Q,Lu Y S,Wang F L,et al.Sub-stage PCA modelling and monitoring method for uneven-length batch processes.Canadian Journal of Chemical Engineering,2012,90(1) :144152.
    [8] 毛乐琦.基于隐马尔科夫模型的无线传感网节点故障诊断算法.计算机应用与软件,2014,1(31):132135.
    [9] 李鑫滨,陈云强,张淑清.基于LS-SVM 多分类器融合决策的混合故障诊断算法.振动与冲击,2013,9 (32):159164.[ZK)]
    [10] Chakrabarti C, Rammohan R, Luger G F.Diagnosis using a first-order stochastic language that learns.Expert Systems with Applications, 2007,2(3):832840.
    [11] 任学平,庞震,辛向志,等.基于改进小波包和EEMD 的轴承故障诊断.轴承,2014,6(57):4144.
    [12] 周晏,尚鹏.基于人工鱼群聚类的传感器节点故障诊断.计算机测量与控制, 2011,1(5):11831185.
    [13] Bearing Data Center.Case Western Reserve University[EB/OL].http://csegroups.case.edu/bearingdatacenter/pages/download-data-file.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵晓君,郑倩.基于PCA-KNN聚类的通用在线故障诊断算法设计计算机测量与控制[J].,2015,23(8):2762-2765.

复制
分享
文章指标
  • 点击次数:1934
  • 下载次数: 90
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-10-29
  • 最后修改日期:2014-12-08
  • 在线发布日期: 2015-10-08
文章二维码