电力系统故障诊断的萤火虫和粒子群混合算法研究
作者:
作者单位:

空军工程大学防空反导学院 陕西 西安 710051,空军工程大学防空反导学院 陕西 西安 710051,空军工程大学防空反导学院 陕西 西安 710051,空军工程大学防空反导学院 陕西 西安 710051

中图分类号:

TM732


Research on Mixture Algorithm of Glowworm and Particle for Power Fault Section Estimate
Author:
Affiliation:

Air and Missile Defense College,Air Force Engineering University Shannxi Xian 710051,Air and Missile Defense College,Air Force Engineering University Shannxi Xian 710051,Air and Missile Defense College,Air Force Engineering University Shannxi Xian 710051,Air and Missile Defense College,Air Force Engineering University Shannxi Xian 710051

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    电力系统故障诊断主要就是根据保护和断路器的动作信息来判别故障区域,而找出故障元件又是其难点和主要工作,以目标函数描述其模型,则故障诊断问题转化为0-1整数规划问题。适合于智能算法求解。用粒子群算法解决该问题时收敛速快,但容易陷入局部最优值;用萤火虫算法时能够找到全局最优值,但其后期收敛速度较慢。论文融合这两种算法并用之求解故障诊断的目标函数,仿真结果表明:融合后的算法兼备两种算法的优点,能够以较快速度收敛,并找到全局最优解,且收敛精度高,稳定性好。

    Abstract:

    The main basement of fault diagnose in power system is estimate the fault location by making use of the informations from the actions of circuit breakers and protective relays, and find out the fault elements is the main job, which also is difficult, describe the question as a target function, then turn the fault diagnose to a 0-1 integer programming model. This kind of question is easy to solve by intelligent algorithm。Particle optimization algorithm approach converge is fast when solving the problem, but it’s easy to fall into local optimum。Glowworm swarm optimization algorithm can find out the best value while it’s a little slower than particle optimization algorithm. The paper make full use of the two algorithm’s advantages, combine them and lead them in power system fault diagnose. the simulation results prove that the new idea is successfully, it has a high approach converge and can find out the best value while precise and stability.

    参考文献
    [1]杨健雄,何正友.基于时间约束Petri网的电网警报处理及故障诊断[J].电力系统保护与控制.2012,40(1),77-84,90
    [2]熊国江,石东源,朱林.基于多输出衰减径向基函数神经网络的电网故障诊断[J].电力系统保护与控制.2013,41(21),38-45.
    [3]郭创新,游家训,彭明伟,等.基于面向元件神经网络与模糊积分融合技术的电网故障智能诊断[J].电工技术学报.2010,25(9),183-190.
    [4]方勇灵,陆榛,宋福海,等.一种继电保护故障信息智能分析方案及应用[J].电力系统保护与控制.2013,41(5),114-118.
    [5]陈铸华,李晓.电力系统故障诊断的多智能体粒子群优化算法[J].计算机测量与控制.2010,18(8),1753-1755,1758.
    [6]王改革,郭立红,段红,等.基于萤火虫算法优化BP神经网络的目标威胁估计[J].吉林大学学报(工学版).2013,43(4),1064-1069.
    [7] Prathyush P.Menon and Debasish Ghose. Boundary Mapping of 3-Dimensional Regions[C] .American Control Conference, 2013,2984-2989.
    [8]曾冰,李明富,张翼,等.基于萤火虫算法的装配序列规划研究[J].机械工程学报. 2013,49(11),177-184.
    [9]祝华正.萤火虫群算法的改进及其应用[D].广西民族大学.2011,4.
    [10]李晓,黄纯.电力系统故障诊断的量子粒子群优化算法[J].电力系统及其自动化学报.2011,23(8),61-66.
    引证文献
引用本文

尤晓亮,何广军,田德伟,李槟槟.电力系统故障诊断的萤火虫和粒子群混合算法研究计算机测量与控制[J].,2015,23(10):27.

复制
分享
文章指标
  • 点击次数:1586
  • 下载次数: 701
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-04-27
  • 最后修改日期:2015-05-25
  • 录用日期:2015-05-26
  • 在线发布日期: 2015-10-28
文章二维码