基于强化学习的可靠传输波形决策方法
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第五十四研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金联合基金重点支持项目(U22B2041)


Reliable transmission waveform decision-making method based on reinforcement learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为应对在未来复杂的战场电磁环境下,因敌方干扰呈现智能化、多手段等特征抗而导致的抗干扰手段不足的问题,提出了一种基于强化学习的动态自适应的可靠传输波形决策方法。以强化学习算法为基础,首先对算法中的贪婪动作选择进行优化设计,平衡了算法前后期的探索概率,并加入了自注意力机制,使算法能关注到不同输入之间的联系。采用优化后的算法建立智能体,并对智能体进行抗干扰传输方式的决策的学习训练。仿真结果表明优化后的算法相较于传统强化学习算法,在探索前期平均奖励值高10%,同时在中期收敛速度平均快20%,最后对决策输出的传输方式进行误码率性能分析,验证了波形决策策略的有效性。

    Abstract:

    To address the issue of insufficient anti-jamming capabilities caused by intelligent and multi-means adversarial jamming in future complex battlefield electromagnetic environments, a dynamic adaptive reliable transmission waveform decision-making method based on reinforcement learning is proposed. Building on the reinforcement learning algorithm, the greedy action selection within the algorithm is first optimized to balance the exploration probability during the early and late stages of the algorithm. Additionally, a self-attention mechanism is incorporated to enable the algorithm to capture relationships between different inputs. The optimized algorithm is used to establish an intelligent agent, which is then trained to make decisions on anti-jamming transmission methods. Simulation results show that, compared to traditional reinforcement learning algorithms, the optimized algorithm achieves a 10% higher average reward value in the early exploration phase and converges 20% faster on average during the mid-phase. Finally, a bit error rate performance analysis of the transmission methods output by the decision-making process verifies the effectiveness of the waveform decision-making strategy.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-12-01
  • 最后修改日期:2025-12-24
  • 录用日期:2025-12-24
  • 在线发布日期:
  • 出版日期:
文章二维码