基于 PyQt 的蒸汽阀门故障诊断软件设计
DOI:
CSTR:
作者:
作者单位:

1.中核运维技术有限公司;2.中国核动力研究设计院

作者简介:

通讯作者:

中图分类号:

V57

基金项目:

智能评估技术研究


Design of PyQt-based Fault Diagnosis Software for Steam Valves
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    蒸汽阀门作为核电与化工领域的关键流体控制设备,其健康状态直接关乎生产安全。针对蒸汽阀门通用监测软件多通道采集易阻塞、复杂模型适配缺失的难题;提出了基于 PyQt5 框架与模型化设计范式的故障诊断软件设计方案;构建“实时采集-离线分析”双模架构,设计异步双缓冲与 QThread 线程池技术,突破多通道同步采集与模型推理争夺资源的瓶颈;利用主蒸汽隔离阀满功率运行数据,建立 LSTM-SVM 级联混合驱动模型,通过 LSTM 捕捉时序规律预测特征并由 SVM 划定决策边界,实现从“态势感知”到“趋势预警”的协同诊断;经实验验证,系统支持 26 路通道无阻塞同步采集;报警响应时间 ≤80 ms,故障判定准确率约 94 %,典型故障排查时间缩短约 90 %;实际应用验证了方案有效性,解决了蒸汽阀门无专用监测软件的难题。

    Abstract:

    Steam valves serve as critical fluid control components in the nuclear and chemical industries, where their health status directly impacts production safety. To address the limitations of general-purpose monitoring software—specifically blocking issues during multi-channel concurrent acquisition and the lack of specialized backends for complex models—this paper proposes a design scheme for fault diagnosis software based on the PyQt5 framework and the Model-Based Design paradigm. A dual-mode architecture featuring "real-time acquisition and offline analysis" is constructed. By incorporating an asynchronous double-buffering mechanism and QThread pooling, the system effectively overcomes performance bottlenecks caused by resource competition between synchronous acquisition and model inference. Based on operational data from main steam isolation valves at full power, an LSTM-SVM cascade hybrid model is established. This model employs LSTM to capture nonlinear temporal evolutionary patterns for feature prediction and SVM to delineate decision boundaries, thereby achieving collaborative diagnosis ranging from "situational awareness" to "trend warning." Experimental results demonstrate that the system supports non-blocking synchronous acquisition across 26 channels, maintains an alarm response time of ≤80 ms, achieves a fault determination accuracy of approximately 94%, and reduces troubleshooting time for typical faults by about 90%. Field applications validate the effectiveness of the proposed scheme, providing a robust solution for the specialized monitoring of steam valves.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-27
  • 最后修改日期:2025-12-26
  • 录用日期:2025-12-26
  • 在线发布日期:
  • 出版日期:
文章二维码