基于改进YOLOv11的袋式除尘器滤袋破损检测方法
DOI:
CSTR:
作者:
作者单位:

1.河北白沙烟草有限责任公司 保定卷烟厂;2.华北电力大学 电子与通信工程系

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目);河北中烟工业有限责任公司科技项目


IFB-YOLO: A Filter Bag Damage Detection Method Based on the Improved YOLOv11
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在卷烟生产行业中,袋式除尘器的滤袋破损会导致粉尘泄漏,严重威胁生产安全与周围环境;传统的人工巡检方法效率低下且难以实现实时精准检测;为此,提出一种基于改进YOLOv11的滤袋破损检测方法IFB-YOLO;该方法针对滤袋破损多尺度、形态不规则、边界模糊等特点,在C3k2中引入PKIBlock模块,利用并行多尺度深度卷积增强对微小及多样破损的纹理特征提取能力;在骨干网络后集成LSKA模块,强化模型在复杂背景下对关键破损区域的聚焦能力;采用MPDIoU损失函数,通过最小化边界框对角点距离,优化了破损区域的定位精度;在除尘器滤袋破损数据集上的实验表明,IFB-YOLO的mAP50达到95.3%,相比基线模型提升了2.8%,并优于其他主流检测模型;实验结果证明了改进模型的可行性与有效性。

    Abstract:

    In the cigarette manufacturing industry, filter bag damage within baghouse dust collectors can lead to dust leakage, posing serious threats to production safety and the surrounding environment. Traditional manual inspection methods are inefficient and struggle to achieve real-time, precise detection. To address this, a filter bag damage detection method, IFB-YOLO, based on an improved YOLOv11, is proposed. Addressing the multi-scale nature, irregular morphology, and blurred boundaries of filter bag damage, this method incorporates the PKIBlock module within C3k2. This leverages parallel multi-scale deep convolutions to enhance texture feature extraction for minute and diverse damage patterns. An LSKA module is integrated post-backbone network to strengthen the model is ability to focus on critical damage areas within complex backgrounds. The MPDIoU loss function is employed to optimise damage localisation accuracy by minimising diagonal distances between bounding box corners. Experiments on dust collector filter bag damage datasets demonstrate that IFB-YOLO achieves a mean average precision at 50% (mAP50) of 95.3%, representing a 2.8% improvement over baseline models and outperforming other mainstream detection approaches. These results validate the feasibility and effectiveness of the enhanced model.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-18
  • 最后修改日期:2025-12-24
  • 录用日期:2025-12-25
  • 在线发布日期:
  • 出版日期:
文章二维码