基于协议自动机与核对齐的工控流量不平衡混合采样算法
DOI:
CSTR:
作者:
作者单位:

国家工业信息安全发展研究中心监测应急所

作者简介:

通讯作者:

中图分类号:

基金项目:

国防基础科研计划(No:JCKY2023608C001)


Hybrid Sampling Algorithm for Imbalanced Industrial Control Traffic Based on Protocol Automaton and Kernel Alignment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业控制网络流量中正常与攻击样本极度不平衡且通用过采样方法易造成协议语义失真的问题,提出协议语义驱动的工控流量不平衡混合采样算法(KAK-PACS)。算法在融合协议语义与工艺知识的协议状态自动机上开展采样:利用自动机约束的对偶轨迹反事实采样生成协议合法、形态接近真实攻击的少数类攻击轨迹;引入基于核对齐的多数类凝聚机制,从大量正常样本中选取保持整体分布结构的代表性原型,实现信息保持型欠采样。在SWaT与PowerCPS数据集的GTCN检测模型上验证,Macro-F1和AUC-PR等指标较不采样、SMOTE与TimeGAN最高提升超过20%,并在多种检测模型上获得稳定增益。结果表明,该算法在保持正常工况结构的前提下增强少数类表示,可提升不平衡工控流量异常检测的精度与鲁棒性。

    Abstract:

    To address severe class imbalance in industrial control network traffic and the semantic distortion introduced by generic oversampling methods such as SMOTE, a protocol-semantics-driven hybrid sampling algorithm (KAK-PACS) is proposed. Sampling is performed on a protocol state automaton integrating protocol semantics and process knowledge. An automaton-constrained dual-trajectory counterfactual strategy generates protocol-compliant minority attack trajectories that closely resemble real attacks, while a kernel-alignment-based condensation mechanism selects representative prototypes from normal samples to achieve information-preserving undersampling. Experiments on the SWaT and PowerCPS datasets show that, on the GTCN detector, Macro-F1 and AUC-PR improve by over 20% compared with no sampling, SMOTE, and TimeGAN, with consistent gains across multiple detectors. The results indicate that KAK-PACS strengthens minority representation without disrupting normal operating structures, improving accuracy and robustness for imbalanced industrial control traffic anomaly detection.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-17
  • 最后修改日期:2025-12-17
  • 录用日期:2025-12-17
  • 在线发布日期:
  • 出版日期:
文章二维码