一种改进YOLO11n的钢材表面缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

河北地质大学 信息工程学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

河北省教育科学规划课题一般资助课题项目(2303121); 河北省高等教育教学改革研究项目(2020GJJG227); 河北省高等学校科学技术研究重点项(ZD2018043)


EMC-YOLO11: An improved steel surface defect detection algorithm for
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对钢材表面缺陷种类多、尺度变化大、精度差等问题,提出一种高效的EMC-YOLO11n钢材表面缺陷检测算法。该方法在主干网络中融入EIEStem模块,有效地提取图像中的边缘和空间信息,增强模型对图像的局部和全局理解;重构特征交互模块MBE-C3k2,高效的处理复杂的背景特征,进而降低模型整体的计算量;重新设计C2DyT模块,提升模型的特征提取能力和特征传递效率。在NEU-DET钢材缺陷数据集上进行实验验证,相较于YOLO11n算法,EMC-YOLO11n算法的mAP@0.5提升4个百分点,准确率、召回率和F1-Score分别提升了4.6、1.6和1.7个百分点。实验结果表明,该算法在检测精度方面得到了进一步的提升,并且准确率和召回率取得更好的平衡,结果显示该算法具备良好的鲁棒性。

    Abstract:

    To address the challenges of diverse steel surface defects, large scale variations, and low detection accuracy, an efficient steel surface defect detection algorithm, termed EMC-YOLO11n, is proposed. The proposed method incorporates the EIEStem module into the backbone network to effectively extract edge and spatial information, thereby enhancing the model’s local and global feature representation. The feature interaction module MBE-C3k2 is reconstructed to efficiently handle complex background features, which reduces the overall computational cost of the model. In addition, the C2DyT module is redesigned to improve feature extraction capability and feature transmission efficiency. Experimental validation on the NEU-DET steel surface defect dataset shows that, compared with the YOLO11n algorithm, EMC-YOLO11n improves mAP@0.5 by 4 percentage points. In addition, precision, recall, and F1-score are increased by 4.6, 1.6, and 1.7 percentage points, respectively. These results indicate that the proposed method further enhances detection accuracy, achieves a better balance between precision and recall, and demonstrates strong robustness.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-12
  • 最后修改日期:2025-12-22
  • 录用日期:2025-12-23
  • 在线发布日期:
  • 出版日期:
文章二维码