基于DBSD-YOLOv8的水下模糊及遮挡目标检测方法
DOI:
CSTR:
作者:
作者单位:

青岛科技大学 信息科学技术学院

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

山东省重点研发计划(科技示范工程)课题(2021SAGC0701);青岛市海洋科技创新专项(22-3-3-hygg-3-hy)。


DBSD-YOLOv8:Underwater Fuzzy and Occluded Target Detection Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决水下图像普遍存在的模糊失真、目标尺度差异大以及相互遮挡导致的检测难题,提出了一种基于YOLOv8n模型改进的水下图像目标检测方法DBSD-YOLOv8。在主干结构中引入DICAM作为特征提取的前置增强模块,缓解水下图像中常见的比例退化与不均匀光衰减问题;采用双时相特征聚合模块BFAM作为C2f模块的替代结构,在噪声干扰与边界模糊等复杂场景中保持高精度识别。在Neck层嵌入分离增强注意力机制SEAM,增强模型在遮挡和模糊环境下的特征建模能力。检测头采用DyHead检测头,利用其多尺度和空间位置感知能力,提升了对不同尺寸目标的检测精度。实验结果显示,改进后的模型在RUOD数据集上的mAP@0.5和mAP@0.5:0.95分别达到了0.862和0.622,相较于原始YOLOv8n模型分别提高了3%和3.3%。

    Abstract:

    To solve the detection problems caused by common blurring distortion, large differences in target scale, and mutual occlusion in underwater images, a new underwater image object detection method DBSD-YOLOv8 based on YOLOv8n model improvement is proposed. Introducing DICAM as a pre enhancement module for feature extraction in the backbone structure to alleviate the common problems of scale degradation and uneven light attenuation in underwater images; Adopting the dual phase feature aggregation module BFAM as an alternative structure to the C2f module to maintain high-precision recognition in complex scenarios such as noise interference and boundary blurring. Embedding the separation enhanced attention mechanism SEAM in the Neck layer enhances the model"s feature modeling ability in occluded and blurry environments. The detection head adopts DyHead detection head, which utilizes its multi-scale and spatial position perception ability to improve the detection accuracy of targets of different sizes and positions. The experimental results show that the improved model performs well on the RUOD dataset mAP@0.5 and mAP@0.5:0.95 achieved 0.862 and 0.622, respectively, which were 3% and 3.3% higher than the original YOLOv8n model.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-10
  • 最后修改日期:2025-12-26
  • 录用日期:2025-12-26
  • 在线发布日期:
  • 出版日期:
文章二维码