基于CenterNet-EGS的铁轨表面缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

武汉科技大学机械工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Rail Surface Defect Detection Algorithm Based on CenterNet?EGS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    铁轨表面缺陷检测对于列车的安全运行是必要的。然而,铁轨表面不同缺陷之间的多尺度变化给高精度检测带来了巨大挑战。基于深度学习的缺陷检测方法是实现实时端到端目标检测的重要手段。在此基础上,本文提出了一种新型铁轨表面缺陷检测网络即CenterNet-EGS模型。首先为了抑制冗余背景以及增强不同缺陷类型的判别能力,本文在CenterNet主干中嵌入高效通道注意力模块(ECA),将原始主干Bottleneck模块替换为ECABottleneck模块,增强样本不均衡情况下模型对不同特征的提取能力。其次,将分组空间卷积(GSConv)模块作用与解码阶段进行轻量级特征融合,在不显著增加计算量的前提下提升了语义与空间信息的表达能力,为后续目标定位与回归分析提供更精细的特征支持。然后,引入SIoU损失函数,提升低质量样本预测能力,并提升模型检测速度。最后,将提出的CenterNet-EGS模型应用于铁轨表面缺陷数据集,并将其与其他方法进行了比较,例如Faster-RCNN,Yolov8_x,RetinaNet,SSD和原始的CenterNet模型。结果表明,本文所提出的方法在铁轨缺陷检测中具有更加出色的综合性能,其中,mAP为91.99%,precision值为83.29%,F1值为0.847,recall值为88.39%,同时FPS为56.20,满足实时检测的要求。

    Abstract:

    Rail surface defect detection is essential for ensuring the safe operation of trains. However, the significant multi-scale variations among different defect types pose substantial challenges to achieving high-precision detection. Deep learning-based approaches have emerged as effective solutions for real-time, end-to-end defect detection.To address these challenges, this paper proposes a novel rail surface defect detection network, referred to as the CenterNet-EGS model. First, to suppress redundant background information and enhance the discriminative capability across various defect types, an Efficient Channel Attention (ECA) module is embedded into the CenterNet backbone. The original Bottleneck blocks are replaced with ECABottleneck modules, which improve the model’s ability to extract features under class-imbalanced conditions.Second, to achieve lightweight multi-scale feature fusion in the decoding stage, a Grouped Spatial Convolution (GSConv) module is incorporated. This enhances both semantic and spatial representation without significantly increasing computational cost, thereby providing more refined features for downstream object localization and regression tasks.Third, a Scale-Invariant Intersection over Union (SIoU) loss function is introduced to enhance the model’s robustness in predicting low-quality samples and to accelerate convergence during training.The proposed CenterNet-EGS model is evaluated on a dedicated rail surface defect dataset and benchmarked against several mainstream detection models, including Faster R-CNN, YOLOv8_x, RetinaNet, SSD, and the original CenterNet. Experimental results demonstrate that CenterNet-EGS achieves superior overall performance, attaining a mean Average Precision (mAP) of 91.99%, precision of 83.29%, F1 score of 0.847, recall of 88.39%, and an inference speed of 56.20 FPS, thereby fully meeting the requirements for real-time detection in practical applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-10
  • 最后修改日期:2025-12-19
  • 录用日期:2025-12-19
  • 在线发布日期:
  • 出版日期:
文章二维码