面向工业设备漏油检测的实时语义分割方法
DOI:
CSTR:
作者:
作者单位:

中国恩菲工程技术有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(工业软件)(2022YFB3304901)


Real-time Semantic Segmentation Method for Industrial Equipment Oil Leak Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工业设备漏油检测在安全生产与运维中至关重要,其视觉形态既包含较大面积的地面积液,也包含尺度更小、形态细长的滴油目标。面对工业现场复杂背景与实时性的双重要求,传统重型分割网络难以部署,轻量化方法又常因上下文不足与特征融合粗糙而对小目标不敏感。为此,本文提出一种面向漏油检测的轻量级实时语义分割方法,在保持高速推理的前提下显著增强对小目标与细边界的感知能力。该方法,首先使用轻量级ASPP提取全局特征,兼顾远场上下文与局部细节;然后在高低分辨率特征融合阶段推出残差通道注意力融合模块,在不增加关键路径延迟的前提下提升语义细节加强特征提取能力;最后通过分类模块输出分割结果。实验结果表明,所提算法在工业漏油数据集上取得了78.56%的mIoU,相比原始Fast-SCNN提升了4.86个百分点,推理速度达到112 FPS,满足实时检测需求,有效缓解了轻量网络对小目标不敏感的痛点,为工业场景的快速部署提供了可行方案。

    Abstract:

    Oil leakage in industrial equipment poses significant risks to safety and operational continuity. Its visual manifestations range from large-scale fluid accumulations on the ground to smaller, elongated drips. Traditional heavy-weight segmentation networks struggle with deployment under the dual constraints of complex industrial backgrounds and real-time requirements, while lightweight methods often lack sensitivity to small targets due to insufficient contextual capture and coarse feature fusion. To address this, we propose a lightweight real-time semantic segmentation method tailored for oil leakage detection. It significantly enhances the perception of small targets and fine boundaries while maintaining high-speed inference.The proposed method first employs a lightweight Atrous Spatial Pyramid Pooling (ASPP) module to extract global features, effectively integrating both long-range contextual information and local details. Subsequently, during the fusion of high- and low-resolution features, a Residual Channel Attention Fusion module is introduced. This module enhances semantic detail and strengthens feature extraction capabilities without adding critical path delays. Finally, the segmentation result is output through a classification module.Experimental results on an industrial oil leakage dataset show that our algorithm achieves an mIoU of 78.56%, which is 4.86 percentage points higher than the original Fast-SCNN. With an inference speed of 112 FPS, it meets real-time detection requirements. This approach effectively mitigates the common weakness of lightweight networks—insensitivity to small targets—offering a practical solution for rapid deployment in industrial scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-10
  • 最后修改日期:2025-12-17
  • 录用日期:2025-12-17
  • 在线发布日期:
  • 出版日期:
文章二维码