基于边云协同的车辆场景多模态语义补全与语义压缩方法
DOI:
CSTR:
作者:
作者单位:

广州华商学院 人工智能学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

2024年广东省普通高校自然科学类平台和项目(2024ZDZX3035)。


Edge-Cloud Collaborative Multi-Modal Semantic Completion and Compression Method for Vehicle Scenarios
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向城市道路的遮挡补全与通信受限问题,本文提出一种车、路、云协同的多模态语义补全与语义压缩方法。该方法在车端融合相机、雷达与惯导,完成首次补全并仅上行紧凑潜表示,在路侧聚合多车潜码进行时空对齐,生成区域引导向量与占据/遮挡提示下发至相关车辆,在云端按区域热度迭代代码本与参数。通过重要度驱动的区域化码率分配、关键帧与差分一体化消息形态降低上传开销,并以双头解码与小步细化提升被遮挡区域的形状与语义质量。实验测试表明,mIoU_occ相对强基线平均提升约3%–4%,复杂场景分位段的平均上行开销整体更低,常用带宽条件下端到端 P95 时延约为100 ms,满足车路协作部署的实时性与带宽约束要求。

    Abstract:

    To address occlusion completion and communication constraints on urban roads, this paper proposes a vehicle-road-cloud collaborative multimodal semantic completion and compression method. This approach integrates cameras, radar, and inertial navigation systems at the vehicle level to perform initial completion, transmitting only compact latent representations. Roadside units aggregate latent codes from multiple vehicles for spatio-temporal alignment, generating region guidance vectors and occupancy/occlusion cues distributed to relevant vehicles. Cloud-based processing iteratively updates codebooks and parameters based on regional heatmaps. It reduces upload overhead through importance-driven regionalised coding rate allocation and integrated keyframe/differential message formats. Shape and semantic quality in occluded regions are enhanced via dual-head decoding and small-step refinement. Experimental results demonstrate that mIoU_occ achieves an average improvement of approximately 3%–4% relative to the baseline. Complex scene quantiles exhibit lower average uplink overhead, with end-to-end P95 latency around 100 ms under typical bandwidth conditions. This satisfies the real-time and bandwidth constraints for vehicle-road collaboration deployment.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-04
  • 最后修改日期:2025-12-26
  • 录用日期:2025-12-26
  • 在线发布日期:
  • 出版日期:
文章二维码