基于姿态估计的婴儿全身运动异常检测研究
DOI:
CSTR:
作者:
作者单位:

上海大学 通信与信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Full-Body Movement Abnormality Detection in Infants Based on Pose Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决传统婴儿全身运动质量评估依赖人工观察导致的耗时、主观性强及缺乏定量分析等局限,对通过婴儿姿态估计的自动化评估方法进行了研究。提出了一种基于VitPose骨架网络的姿态估计模型OCEANPose,通过引入自适应遮挡估计加权模块与交叉注意力机制,提升了关节点识别精度,经验证平均精度较基准模型提高1.2%;进一步针对GMs中风险最高的痉挛-同步异常行为,提出了基于机器学习的检测方法,该方法利用OCEANPose提取的关节点序列计算余弦相似度与自相关值,并依据这两种指标实现了对该类异常运动的自动筛选。实验结果表明,所提出的方法为婴儿全身运动评估的客观化与自动化提供了可行的技术解决方案。

    Abstract:

    To address the limitations of traditional General Movements assessment in infants, which relies on manual observation and is time-consuming, subjective, and lacks quantitative analysis, a study was conducted on automated assessment methods through infant pose estimation. A pose estimation model named OCEANPose, built upon the VitPose skeleton network, was proposed. By incorporating an Adaptive Occlusion Estimation Weighting module and a cross-attention mechanism, the model improved joint point recognition accuracy, with experimental results showing a 1.2% increase in mean accuracy compared to the baseline model. Furthermore, targeting the high-risk Cramped-Synchronized abnormal movements in GMs, a machine learning-based detection method was developed. This method calculates cosine similarity and autocorrelation values from the joint point sequences extracted by OCEANPose, enabling automatic screening of such abnormal movements based on these two metrics. Experimental results indicate that the proposed approach provides a feasible technical solution for achieving objective and automated GMs assessment.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-03
  • 最后修改日期:2025-12-19
  • 录用日期:2025-12-19
  • 在线发布日期:
  • 出版日期:
文章二维码