融合时空图卷积与注意力机制的行业就业需求波动预测
DOI:
CSTR:
作者:
作者单位:

1.广州华商学院 2.人工智能学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Industry employment demand fluctuation prediction by integrating spatiotemporal graph convolution and attention mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对行业就业需求波动中复杂的时空耦合关系难以建模的问题,提出一种融合时空图卷积与注意力机制的多粒度动态预测方法。首先,通过长短期双重视角采样策略构建就业需求数据基础,利用空间-时间注意力机制动态增强关键行业节点与事件敏感时段特征。其次,通过图卷积和时间卷积提取各行业的空间依赖关系和时序依赖关系。最后,通过双向图交互模块实现静态结构与时序模式的自适应融合,将融合后的特征与注意力加权特征相结合,通过多层感知机生成行业就业需求波动预测结果。通过时空图卷积捕获区域产业网络的空间依赖关系,结合注意力机制动态加权多源时序特征,实现就业需求波动中时空耦合效应的精准建模与突发冲击的自适应响应。实验结果表明:该方法在制造业和服务业场景下,MAE分别低至0.55和0.72,MAPE低于9.5%,对复杂时空动态的捕捉时,其Moran"s I指数小于0.01。

    Abstract:

    A multi granularity dynamic prediction method that integrates spatiotemporal graph convolution and attention mechanism is proposed to address the problem of difficult modeling of complex spatiotemporal coupling relationships in industry employment demand fluctuations. Firstly, the employment demand data foundation is constructed through a dual perspective sampling strategy of long and short term, and the spatiotemporal attention mechanism is used to dynamically enhance the characteristics of key industry nodes and event sensitive periods. Secondly, spatial and temporal dependencies of various industries are extracted through graph convolution and temporal convolution. Finally, the adaptive fusion of static structure and temporal patterns is achieved through a bidirectional graph interaction module, and the fused features are combined with attention weighted features to generate industry employment demand fluctuation prediction results through a multi-layer perceptron. By capturing the spatial dependencies of regional industrial networks through spatiotemporal graph convolution and dynamically weighting multi-source temporal features with attention mechanism, accurate modeling of spatiotemporal coupling effects in employment demand fluctuations and adaptive response to sudden shocks can be achieved. The experimental results show that this method has MAE as low as 0.55 and 0.72 in manufacturing and service scenarios, respectively, and MAPE below 9.5%. When capturing complex spatiotemporal dynamics, its Moran"s I index is less than 0.01.

    参考文献
    相似文献
    引证文献
引用本文

耿艳利,徐胜超.融合时空图卷积与注意力机制的行业就业需求波动预测计算机测量与控制[J].,2025,33(12):303-311.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-28
  • 最后修改日期:2025-10-16
  • 录用日期:2025-10-17
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码