改进樽海鞘群算法的无人机三维路径规划
DOI:
CSTR:
作者:
作者单位:

1.通信士官学校 机动通信系;2.贵州交通职业大学 智慧交通学院

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

通信士官学校理论研究项目(KYCQJQZL22XXA)


Three-dimensional path planning of UAV base on chaotic Gaussian refraction learning salp swarm algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    该研究针对标准樽海鞘群算法在无人机三维路径规划中求解精度不足的问题,提出了一种融合混沌高斯折射学习机制的改进算法。通过对初始种群生成方式、领导者更新策略以及最差个体优化机制进行改进,采用了Tent混沌映射增强种群多样性,引入高斯变异操作提升全局搜索能力,并利用折射原理的学习策略强化局部搜索性能。为验证算法效果,对6种典型复杂函数、CEC2014测试函数集以及无人机三维路径规划问题进行了仿真实验。实验结果表明,改进算法在函数优化中表现出更快的收敛速度和更高的求解精度;在路径规划应用中,该算法显著提升了路径精度与收敛效率,能够有效满足实际三维路径规划的需求。

    Abstract:

    This study addresses the issue of insufficient solution accuracy in the standard Salp Swarm Algorithm for three-dimensional path planning of drones, proposing an improved algorithm that incorporates a chaotic Gaussian mutation learning mechanism. By enhancing the initial population generation method, leader update strategy, and worst individual optimization mechanism, the Tent chaotic mapping is employed to enrich population diversity, Gaussian mutation operation is introduced to enhance global search capability, and the learning strategy based on the refraction principle is utilized to strengthen local search performance. To verify the effectiveness of the algorithm, simulation experiments were conducted on six typical complex functions, the CEC2014 test function set, and three-dimensional path planning problems for drones. The experimental results demonstrate that the improved algorithm exhibits faster convergence speed and higher solution accuracy in function optimization. In path planning applications, the algorithm significantly improves path accuracy and convergence efficiency, effectively meeting the requirements of practical three-dimensional path planning.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-30
  • 最后修改日期:2025-09-10
  • 录用日期:2025-09-11
  • 在线发布日期:
  • 出版日期:
文章二维码