基于Transformer-LSTM的路径跟踪控制策略设计
DOI:
CSTR:
作者:
作者单位:

西安欧亚学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Robot Path Tracking Control Algorithm Based on Transformer Attention Mechanism Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有可移动机器人路径跟踪控制算法存在的效率低、精度差、易出现路径偏差等问题,设计了一种基于transformer注意力机制网络的跟踪算法。先在可移动机器人前端位置部署双目视觉系统实时采集图像,在自注意力机制基础上构建transformer训练模型,并在模型的编码器和解码器中引入了LSTM结构以提升模型的二维图像数据训练能力。transformer网络中的计算资源权重分配将决定模型的复杂度程度,为此引入了CS群智能优化算法与transformer相结合,在全局范围内寻找最佳的权重分配参数,通过自适应步长的调整不断修正学习率,以实现更精确的可移动机器人路径跟踪。10组测试实验的结果显示:提出算法完成路径跟踪任务的平均耗时仅为9.2s,采样点的路径偏差方差为0.015,优于现有的机器人路径跟踪算法。

    Abstract:

    Aiming at the problems such as low efficiency, poor accuracy and path deviation in existing path tracking control algorithms for mobile robots, a tracking algorithm based on attention mechanism network (ACN) is designed. Firstly, a binocular vision system is deployed at the front end of the mobile robot to collect images in real time, and a transformer training model is constructed based on the self-attention mechanism, and LSTM structure is introduced into the encoder and decoder of the model to improve the model"s two-dimensional image data training ability. Weight allocation of computing resources in transformer network will determine the complexity of the model. Therefore, CS group intelligent optimization algorithm is introduced in combination with transformer to find the best weight allocation parameters in the global scope and constantly modify the learning rate through adaptive step size adjustment, so as to achieve more accurate path tracking of mobile robots. The results of 10 groups of test experiments show that the average time of the proposed algorithm to complete the path tracking task is only 9.2s, and the path deviation variance of the sampling point is 0.015, which is better than the existing robot path tracking algorithm.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-03
  • 最后修改日期:2025-09-01
  • 录用日期:2025-09-01
  • 在线发布日期:
  • 出版日期:
文章二维码