基于网络增强联合稀疏典型相关分析的异常节点检测模型
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第三十研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Anomaly Node Detection Model Based on Network-Enhanced jointSparse Canonical Correlation Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    节点带有属性的网络称为属性网络,检测属性网络中的异常节点在现实世界有着广泛应用,如检测社交媒体上的虚假信息传播者、造成交通网络拥堵的特殊用户、金融欺诈者、通信中的电信诈骗者等。现有方法主要通过图神经网络学习节点表示,检测异常节点。然而,基于图神经网络的检测方法存在节点特征学习不准确、模型过拟合的问题。本文提出一种基于网络增强联合稀疏典型相关分析的异常节点检测模型NEAnomSCCA。该模型构建增强网络,消除网络中的孤立节点和子图,确保模型准确学习节点特征,同时增加随机特征,提升模型泛化能力;在图神经网络模型提取节点特征的基础上,计算重构误差检测出网络中的大多数异常;计算典型稀疏向量,处理高维的稀疏数据,检测出特定的异常。最后,综合每个节点的重构误差和典型稀疏向量的相关性,计算异常得分,检测异常节点。在BlogCatalog、Cora、Citeseer、Pubmed四个现实世界的数据集上与JAANE、ARISE、PROPOSED等模型进行了对比实验,结果表明NEAnomSCCA同当前最优模型相比AUC值分别提高了1.13%、1.35%、1.11%、3.33%。

    Abstract:

    A network with attributes associated with its nodes is called an attribute network. Detecting anomalous nodes in attribute networks has wide-ranging applications in the real world, such as identifying fake information spreaders on social media, special users causing traffic congestion in transportation networks, financial fraudsters, and telecom fraudsters in communication networks. Existing methods primarily use graph neural networks (GNNs) to learn node representations for anomaly detection. However, GNN-based detection methods suffer from issues such as inaccurate node feature learning and model overfitting. This paper proposes a novel anomaly detection model, NEAnomSCCA, based on network-enhanced joint sparse canonical correlation analysis. The model constructs an enhanced network to eliminate isolated nodes and subgraphs, ensuring the model accurately learns node features. It also incorporates random features to improve the model"s generalization ability. Building upon the GNN model for extracting node features, it calculates reconstruction errors to detect the majority of anomalies in the network. It also calculates typical sparse vectors to handle high-dimensional sparse data and detect specific anomalies. Finally, by combining the reconstruction errors and the correlation of the typical sparse vectors for each node, the anomaly score is computed to detect anomalous nodes. Comparative experiments on four real-world datasets—BlogCatalog, Cora, Citeseer, and Pubmed—were conducted against models such as JAANE, ARISE, and PROPOSED. The results show that NEAnomSCCA improves the AUC by 1.13%, 1.35%, 1.11%, and 3.33%, respectively, compared to the current best-performing models.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-23
  • 最后修改日期:2025-06-30
  • 录用日期:2025-06-30
  • 在线发布日期:
  • 出版日期:
文章二维码