基于MODE算法的智能检修图像模型分析
DOI:
CSTR:
作者:
作者单位:

国能国华北京燃气热电有限公司、北京、100018

作者简介:

通讯作者:

中图分类号:

基金项目:


Analysis of Intelligent Maintenance Image Model Based on MODE Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业智能检修中复杂工况下图像噪声污染、缺陷特征弱区分度等问题,本研究提出基于多目标差分进化算法(Multi-Objective Differential Evolution Algorithm,MODE)的智能检修图像模型。通过灰度共生矩阵(Gray-Level Co-Occurrence Matrix,GLCM)与局部二值模式(Local Binary Pattern,LBP)的多特征融合提取宏观至微观缺陷表征,利用多目标差分进化算法(Multi-Objective Differential Evolution Algorithm,MODE)协同优化卷积神经网络(Convolutional Neural Network,CNN)参数以平衡模型精度与复杂度,并结合多尺度特征网络和物理模型驱动的噪声抑制策略提升工业场景适应性。实验表明,该模型在裂纹分类准确率达 91.7%,抗高斯噪声、运动模糊等干扰能力较传统方法提升 16.6%-22.9%,端到端检测延迟 153.3 毫秒,为工业设备实时智能检修提供了高效解决方案。

    Abstract:

    Aiming at the problems of image noise pollution and weak distinguishability of defect features under complex working conditions in industrial intelligent maintenance, this study proposes an intelligent maintenance image model based on the Multi-Objective Differential Evolution Algorithm (MODE). The model extracts macro-to-micro defect representations through multi-feature fusion of the Gray-Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP), uses the Multi-Objective Differential Evolution Algorithm (MODE) to collaboratively optimize the parameters of the Convolutional Neural Network (CNN) to balance model accuracy and complexity, and enhances industrial scene adaptability by combining multi-scale feature networks with physics model-driven noise suppression strategies. Experiments show that the model achieves a crack classification accuracy of 91.7%, improves anti-interference capabilities against Gaussian noise, motion blur, etc., by 16.6%-22.9% compared with traditional methods, and has an end-to-end detection delay of 153.3 ms, providing an efficient solution for real-time intelligent maintenance of industrial equipment.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-19
  • 最后修改日期:2025-08-28
  • 录用日期:2025-09-01
  • 在线发布日期:
  • 出版日期:
文章二维码