数据匹配与智能推送算法研究及其在教学训练系统中的应用
DOI:
CSTR:
作者:
作者单位:

1.国防大学联合勤务学院;2.北京航天测控技术有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on the Algorithm of Data Matching and Intelligent Push and its Application in the Teaching-Training System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    军事院校在校学员和任职培训人员需要结合自身军兵种特征、岗位职务特点,学习个性化知识、开展针对性训练,教学训练业务和辅助系统工具需要满足实战化、个性化要求;研究基于基础数据、操作数据、任务数据、浏览数据、标记数据等多维个性化数据的匹配分析、处理挖掘和精准推送技术,通过数据采集、行为分析、特征提取、机器学习、自然语言处理、数据挖掘、数据匹配、多维推送、效果评估等手段,支撑教学训练过程中各类型学员的自主学习和自我训练工作;研制教学训练系统软件,以实战化应用验证数据匹配与智能推送算法的研究成果,系统使用效果表明基于数据分析匹配的智能化知识资源推送方法可以有效提高学员学习效率、学习主动性,提高学员的业务水平、扩展学员的知识领域、锻炼学员的自主能力。

    Abstract:

    Military academy students and on-the-job training personnel need to learn personalized knowledge and carry out targeted training based on their own characteristics of military service and job responsibilities. Teaching and training business and auxiliary system tools need to meet the requirements of practical and personalized training. Research on matching analysis, processing mining, and precise push technology based on multi-dimensional personalized data such as basic data, operation data, task data, browsing data, and tagging data is needed to support the self-learning and self-training work of various types of students in the teaching and training process through data collection, behavior analysis, feature extraction, machine learning, natural language processing, data mining, data matching, multi-dimensional push, and effect evaluation. Develop teaching and training system software to verify the research results of data matching and intelligent push algorithms through practical application. The use effect of the system shows that the intelligent knowledge resource push method based on data analysis and matching can effectively improve the learning efficiency and initiative of students, enhance their professional level, expand their knowledge fields, and exercise their self-ability.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-13
  • 最后修改日期:2025-09-03
  • 录用日期:2025-09-03
  • 在线发布日期:
  • 出版日期:
文章二维码