基于改进的YOLOv11海上人员搜救的目标检测算法
DOI:
CSTR:
作者:
作者单位:

中北大学

作者简介:

通讯作者:

中图分类号:

基金项目:

[1]山西省科技成果转化引导专项,202304021301028,建筑混凝土中钢筋的电磁层析检测与定位系统 [2]中央引导地方科技发展资金(自由探索类基础研究),YDZJSX20231A027,城市近地表空洞的阵列瞬变磁探测系统 [3]山西重点研发计划项目,202202010101007,复杂环境下北斗融合定位技术研究 [4]山西省科技成果转化引导专项,202204021301044,齿轮箱运行故障在线电磁监测系统 [5]中央引导地方科技发展资金(自由探索类基础研究),YDZJSX2024D032,,油液中磨粒在线的磁激励识别技术


Object Detection Algorithm for Maritime Search and Rescue Based on Improved YOLOv11
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机海上人员搜救任务中复杂环境下目标检测精度与实时性的需求,对改进YOLOv11算法进行了研究。通过结合风车状卷积(Pinwheel-shaped Convolution)优化网络主干,设计特征增强模块(FEM,Feature Enhancement Module)与自适应权重的双向特征金字塔网络(BiFPN,Bidirectional Feature Pyramid Network),并引入动态注意力机制,实现了对海上人员微小目标及遮挡目标的特征增强与噪声抑制。采用SeaDronesSee数据集进行实验分析,测试结果表明,改进后模型的检测精度(mAP@0.5)达到78.47%,推理速度(FPS,Frames Per Second)为511.79Hz,优于传统的YOLO系列算法。经实际应用验证,该算法能够满足海上搜救任务的高精度与实时性要求,为智能化应急救援提供了有效技术支持。

    Abstract:

    In response to the demand for target detection accuracy and real-time performance in complex environments for drone-based maritime search and rescue missions, research has been conducted to improve the YOLOv11 algorithm. By integrating Pinwheel-shaped Convolution to optimize the network backbone, designing a Feature Enhancement Module (FEM) and a Bidirectional Feature Pyramid Network (BiFPN) with adaptive weights, and introducing a dynamic attention mechanism, the approach achieves feature enhancement and noise suppression for small and occluded targets at sea. Experiments were conducted using the SeaDronesSee dataset, and the results indicate that the improved model achieved a detection accuracy (mAP@0.5) of 78.47% and an inference speed (FPS, Frames Per Second) of 511.79 Hz, outperforming traditional YOLO series algorithms. Validation through practical applications shows that this algorithm can meet the high accuracy and real-time requirements of maritime search and rescue missions, providing effective technical support for intelligent emergency rescue.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-05
  • 最后修改日期:2025-06-27
  • 录用日期:2025-06-27
  • 在线发布日期:
  • 出版日期:
文章二维码