基于轻量化边缘增强的电力作业穿戴检测
DOI:
CSTR:
作者:
作者单位:

1.宁海县雁苍山电力建设有限公司;2.国网浙江省电力有限公司宁海县供电公司

作者简介:

通讯作者:

中图分类号:

基金项目:

宁波永耀电力投资集团科技项目(CF058211002024001)


Lightweight Edge-enhanced Power Operation Wearable Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电力作业环境中背景复杂和目标尺寸多样等挑战,提出一种轻量化的边缘感知的电力作业穿戴检测算法。首先,针对电力作业环境检测中的背景噪声干扰,多尺度边缘信息增强(MEIE)方法,通过在浅层对边缘特征提取实现对边缘信息的高效融合;在混合编码器部分,设计了ShiftRepC3模块以高效提取并融合局部特征信息,利用DySample方法改进上采样增强重建能力;此外,通过基于注意力机制的剪枝方法减少了模型参数量和计算量,满足电力作业现场对边缘设备部署的需求。实验结果表明,和基线模型RT-DETR相比,所提方法在两个数据集上的mAP50分别提升了2.8和2.1个百分点,在mAP50-95分别提升了2.6和1.5个百分点,并且保持了较低计算开销。

    Abstract:

    To address the challenges of complex backgrounds and diverse target sizes in power operation environments, a lightweight edge-aware wearable detection algorithm for power operations is proposed. First, to mitigate background noise interference in power operation environment detection, a Multi-scale Edge Information Enhancement (MEIE) method is introduced. By extracting edge features at shallow layers, this method enables efficient fusion of edge information. In the hybrid encoder, the ShiftRepC3 module is designed to efficiently extract and fuse local features, while the DySample method improves upsampling to enhance reconstruction capability. Finally, an attention mechanism-based pruning strategy is introduced to reduce model parameters and computational costs, meeting the deployment requirements of edge devices in power operation scenarios. Experimental results demonstrate that, compared to the baseline RT-DETR model, the proposed method improves mAP50 by 2.8 and 2.1 percentage points on two datasets, and mAP50-95 by 2.6 and 1.5 percentage points, respectively, and maintains a low computational cost.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-30
  • 最后修改日期:2025-06-19
  • 录用日期:2025-06-20
  • 在线发布日期:
  • 出版日期:
文章二维码