基于分布式光纤传感的隧道衬砌裂缝智能诊断系统设计
DOI:
CSTR:
作者:
作者单位:

上海交大海科检测技术有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

2021年上海市自然科学基金:水下复杂环境中结构物精准对接多尺度监测方法研究,基金号:21ZR1432400


Design of Intelligent Diagnosis System for Tunnel Lining Cracks Based on Distributed Optical Fiber Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    隧道内光线不足或强光反射会影响视觉检测(如摄像头、激光扫描),使得这类传感器采集的裂缝数据呈现离散化跳变,而难以提取空间连续特征,导致诊断准确率较低。为此,引入分布式光纤传感,设计隧道衬砌裂缝智能诊断系统。该系统硬件部分采用分布式光纤传感器实现高精度应变场监测,结合光信号解调仪与采集设备构建抗干扰信号链,通过核心处理器引脚定义实时数据处理,形成从传感层到计算层的全硬件闭环。软件部分采用三阶段融合去噪算法,通过多尺度小波分解分离分布式光纤传感器采集到裂缝数据的高频与低频,结合低频子带重构高质量的去噪数据。针对去噪后数据仍存在的特征解耦与空间关联性问题,从几何特征、力学特征和材料劣化特征三个维度构建裂缝的完整表征体系,有效区分了真实裂缝的跨尺度连续性特征与环境干扰引起的离散化跳变,提取裂缝数据的空间连续特征。结合动态权重支持向量机实现裂缝分类诊断与严重程度分级。实验结果显示:设计系统去噪后隧道衬砌裂缝数据峰值信噪比最大值达到了78dB,提取的空间曲率指数与实际空间曲率指数趋于一致,隧道衬砌裂缝分类诊断准确率达到了99.6%。

    Abstract:

    Insufficient light or strong light reflection in the tunnel can affect visual inspection (such as cameras and laser scanning), causing the crack data collected by such sensors to show discrete jumps and making it difficult to extract spatial continuous features, resulting in a low diagnostic accuracy rate. To this end, distributed optical fiber sensing is introduced and an intelligent diagnosis system for tunnel lining cracks is designed. The hardware part of this system adopts distributed optical fiber sensors to achieve high-precision strain field monitoring. It combines optical signal demodulation instruments and acquisition devices to construct an anti-interference signal chain. Real-time data processing is defined through the core processor pins, forming a full hardware closed loop from the sensing layer to the computing layer. The software part adopts a three-stage fusion denoising algorithm. It separates the high and low frequencies of the crack data collected by the distributed optical fiber sensor through multi-scale wavelet decomposition, and combines the low-frequency subband to reconstruct high-quality denoising data. Aiming at the problems of feature decoupling and spatial correlation that still exist in the denoised data, a complete characterization system of cracks is constructed from three dimensions: geometric features, mechanical features, and material deterioration features. This effectively distinguishes the cross-scale continuous features of real cracks from the discretization jumps caused by environmental interference, and extracts the spatial continuous features of crack data. Crack classification diagnosis and severity grading are realized by combining the dynamic weight support vector machine. The experimental results show that after denoising by the designed system, the maximum peak signal-to-noise ratio of the tunnel lining crack data reaches 78dB, the extracted spatial curvature index tends to be consistent with the actual spatial curvature index, and the classification diagnosis accuracy rate of tunnel lining cracks reaches 99.6%.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-27
  • 最后修改日期:2025-07-01
  • 录用日期:2025-07-02
  • 在线发布日期:
  • 出版日期:
文章二维码