基于轻量级残差卷积神经网络的机械臂抓取
DOI:
CSTR:
作者:
作者单位:

浙江工业大学 信息工程学院

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

项目名称(编号),国家自然科学基金项目(面上项目,重点项目,重大项目)


Robotic Grasping Based on a Lightweight Residual Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决机械臂在非结构化环境中实现高效抓取的问题,提出一种轻量级残差卷积神经网络的识别与定位方法。网络采用深度可分离卷积以减少参数量和计算开销,同时通过倒置残差连接增强特征传递能力和非线性表达能力,构建适用于单阶段抓取检测的网络结构。整体由下采样、特征提取和上采样三部分组成,其中在上采样过程中引入全局-局部特征融合机制,加强对抓取对象轮廓和形状信息的感知。依据生成的抓取质量热图,采用基于椭圆拟合的抓取姿态优化方法提升姿态估计的准确性。在Cornell和Jacquard数据集上进行实验验证,抓取检测准确率分别达到98.4%和95.2%。在NVIDIA RTX 3090显卡环境下,单张图像推理时间为16ms。实验结果表明,该方法在精度与实时性之间实现了良好平衡。

    Abstract:

    To solve the problem of efficient grasping of robotic arms in unstructured environments, a lightweight residual convolutional neural network recognition and localization method is proposed. The network adopts depthwise separable convolution to reduce parameter count and computational overhead, while enhancing feature transfer and nonlinear expression capabilities through inverted residual connections, constructing a network structure suitable for single-stage capture detection. The whole system consists of three parts: downsampling, feature extraction, and upsampling. In the upsampling process, a global local feature fusion mechanism is introduced to enhance the perception of the contour and shape information of the captured object. Based on the generated grasping quality heatmap, an elliptical fitting based grasping pose optimization method is adopted to improve the accuracy of pose estimation. Experimental verification was conducted on the Cornell and Jacquard datasets, and the capture detection accuracy reached 98.4% and 95.2%, respectively. In the NVIDIA RTX 3090 graphics card environment, the inference time for a single image is 16ms. Experimental results show that this method achieves a good balance between accuracy and real-time performance.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-27
  • 最后修改日期:2025-07-01
  • 录用日期:2025-07-02
  • 在线发布日期:
  • 出版日期:
文章二维码